Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

(Ir)rationality in AI: State of the Art, Research Challenges and Open Questions (2311.17165v2)

Published 28 Nov 2023 in cs.AI, cs.CY, cs.HC, cs.LG, and cs.MA

Abstract: The concept of rationality is central to the field of artificial intelligence. Whether we are seeking to simulate human reasoning, or the goal is to achieve bounded optimality, we generally seek to make artificial agents as rational as possible. Despite the centrality of the concept within AI, there is no unified definition of what constitutes a rational agent. This article provides a survey of rationality and irrationality in artificial intelligence, and sets out the open questions in this area. The understanding of rationality in other fields has influenced its conception within artificial intelligence, in particular work in economics, philosophy and psychology. Focusing on the behaviour of artificial agents, we consider irrational behaviours that can prove to be optimal in certain scenarios. Some methods have been developed to deal with irrational agents, both in terms of identification and interaction, however work in this area remains limited. Methods that have up to now been developed for other purposes, namely adversarial scenarios, may be adapted to suit interactions with artificial agents. We further discuss the interplay between human and artificial agents, and the role that rationality plays within this interaction; many questions remain in this area, relating to potentially irrational behaviour of both humans and artificial agents.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (256)
  1. Is Waze Joking? Perceived Irrationality dynamics in user-robot interactions.  In Proceedings of HICSS-19.
  2. Rational verification: game-theoretic verification of multi-agent systems.  Applied Intelligence, 51, 6569–6584.
  3. Supporting Trust in Virtual Communities.  In Proceedings of HICSS-00, Vol. 7, pp. 6007–6016.
  4. Afriat, S. N. (1967). The Construction of Utility Functions from Expenditure Data.  International Economic Review, 8(1), 67–77.
  5. Reasoning about Hypothetical Agent Behaviours and their Parameters.  In Proceedings of AAMAS-17, pp. 547–555.
  6. Autonomous agents modelling other agents: A comprehensive survey and open problems.  Artificial Intelligence, 258, 66–95.
  7. Guidelines for Human-AI Interaction.  In Proceedings of CHI-19, p. 1–13, New York, USA.
  8. Occam’s razor is insufficient to infer the preferences of irrational agents.  In Proceedings of NeurIPS-18.
  9. Arrow, K. J. (1959). Rational Choice Functions and Orderings.  Economica, 26(102), 121–127.
  10. Arthur, W. B. (1994). Inductive Reasoning and Bounded Rationality.  The American Economic Review, 84(2), 406–411.
  11. Audi, R. (2002). The Architecture of Reason: The Structure and Substance of Rationality. Oxford University Press.
  12. Keyhole Adversarial Plan Recognition for Recognition of Suspicious and Anomalous Behavior.  In Sukthankar, G., Geib, C., Bui, H. H., Pynadath, D. V., and Goldman, R. P. (Eds.), Plan, Activity, and Intent Recognition: Theory and Practice, pp. 87–119. Morgan Kaufmann, Boston.
  13. Azaria, A. (2022). Irrational, but Adaptive and Goal Oriented: Humans Interacting with Autonomous Agents.  In Raedt, L. D. (Ed.), Proceedings of IJCAI-22, pp. 5798–5802.
  14. The Role of Experience in the Gambler’s Fallacy.  Journal of Behavioral Decision Making, 23, 117–129.
  15. Virtue Epistemology and Virtue Ethics.  In Besser-Jones, L.,  and Slote, M. (Eds.), The Routledge Companion to Virtue Ethics, chap. 19. Routledge.
  16. Cumulative Dominance and Heuristic Performance in Binary Multiattribute Choice.  Operations Research, 56(5), 1289–1304.
  17. Distributional Reinforcement Learning. The MIT Press.
  18. Bengio, Y. (2019). The Consciousness Prior.  arXiv: 1709.08568.
  19. Reducing moral ambiguity in partially observed human–robot interactions.  Advanced Robotics, 35(9), 537–552.
  20. Deep Neural Networks Carve the Brain at its Joints.  arXiv: 2002.08891.
  21. Normative and descriptive rationality: from nature to artifice and back.  Journal of Experimental & Theoretical Artificial Intelligence, 30(2), 331–344.
  22. Besold, T. R. (2013). Rationality {in—for—through} AI.  In Kelemen, J., Romportl, J., and Zackova, E. (Eds.), Beyond Artificial Intelligence: Contemplations, Expectations, Applications, pp. 49–62. Springer Berlin Heidelberg, Berlin, Heidelberg.
  23. Neural-Symbolic Learning and Reasoning: A Survey and Interpretation.  In Hitzler, P.,  and Sarker, M. K. (Eds.), Neuro-Symbolic Artificial Intelligence: The State of the Art, chap. 1. IOS Press.
  24. ’It’s Reducing a Human Being to a Percentage’: Perceptions of Justice in Algorithmic Decisions.  In Proceedings of CHI-18, p. 1–14.
  25. Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings.  In Proceedings of NeurIPS-16, p. 4356–4364.
  26. Boole, G. (2009). An Investigation of the Laws of Thought: On Which Are Founded the Mathematical Theories of Logic and Probabilities. Cambridge University Press.
  27. Bortolotti, L. (2013). Rationality and Sanity: The Role of Rationality Judgments in Understanding Psychiatric Disorders.  In Fulford, K. W. M., Davies, M., Gipps, R., Graham, G., Sadler, J. Z., and Stanghellini, Giovanni amd Thornton, T. (Eds.), The Oxford Handbook of Philosophy and Psychiatry. Oxford University Press.
  28. Multiagent learning using a variable learning rate.  Artificial Intelligence, 136(2), 215–250.
  29. Brian Arthur, W. (1993). On designing economic agents that behave like human agents.  Journal of Evolutionary Economics, 3, 1–22.
  30. Briggs, R. A. (2023). Normative Theories of Rational Choice: Expected Utility.  In Zalta, E. N.,  and Nodelman, U. (Eds.), The Stanford Encyclopedia of Philosophy (Fall 2023 edition). Metaphysics Research Lab, Stanford University.
  31. Brighton, H. (2006). Robust Inference with Simple Cognitive Models.  In Proceedings of the 2006 AAAI Spring Symposium, pp. 17–22.
  32. Brooks, R. A. (1991). Intelligence without representation.  Artificial Intelligence, 47(1), 139–159.
  33. Brown, C. (1988). Is Hume an Internalist?.  Journal of the History of Philosophy, 26(1), 69–87.
  34. Brown, G. W. (1951). Iterative Solution of Games by Fictitious Play.  In Koopmans, T. C. (Ed.), Activity Analysis of Production and Allocation, pp. 374–376. Wiley.
  35. Language Models are Few-Shot Learners.  In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (Eds.), Proceedings of NeurIPS-20, Vol. 33, pp. 1877–1901. Curran Associates, Inc.
  36. Sparks of Artificial General Intelligence: Early experiments with GPT-4.  arXiv: 2303.12712.
  37. Decision Heuristics for Comparison:How Good Are They?.  In Guy, T. V., Kárný, M., Rios-Insua, D., and Wolpert, D. H. (Eds.), Proceedings of the NeurIPS-16 Workshop on Imperfect Decision Makers, Vol. 58, pp. 1–11.
  38. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification.  In Friedler, S. A.,  and Wilson, C. (Eds.), Proceedings of FAccT-18, Vol. 81, pp. 77–91.
  39. Semantics derived automatically from language corpora contain human-like biases.  Science, 356(6334), 183–186.
  40. Calude, C. S. (2021). Incompleteness and the Halting Problem.  Studia Logica, 109(5), 1159–1169.
  41. Cardella, V. (2020). Rationality in mental disorders: too little or too much?.  European Journal of Analytic Philosophy, 16(2).
  42. Cave, E. M. (2005). A Normative Interpretation of Expected Utility Theory.  Journal of Value Inquiry, 39, 431.
  43. Multiagent Learning in the Presence of Memory-Bounded Agents.  Autonomous Agents and Multi-Agent Systems, 28(2), 182–213.
  44. Human irrationality: both bad and good for reward inference.  arXiv: 2111.06956.
  45. Reinforcement Learning in Economics and Finance.  arXiv: 2003.10014.
  46. Visions of rationality.  Trends in Cognitive Sciences, 2(6), 206–214.
  47. Implications of Human Irrationality for Reinforcement Learning.  arXiv: 2006.04072.
  48. Apparently Irrational Choice as Optimal Sequential Decision Making.  In Proceedings of AAAI-21, Vol. 35, pp. 792–800.
  49. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence.  Scientific Reports, 6, 27755.
  50. Notes: The “Gambler’s Fallacy” in Lottery Play.  Management Science, 39(12), 1521–1525.
  51. Cohen, L. J. (1981). Can human irrationality be experimentally demonstrated?.  Behavioral and Brain Sciences, 4(3), 317–331.
  52. Coleman, D. (1992). Hume’s Internalism.  Hume Studies, 18(2), 331–347.
  53. Demographic Effects in Facial Recognition and Their Dependence on Image Acquisition: An Evaluation of Eleven Commercial Systems.  IEEE Transactions on Biometrics, Behavior, and Identity Science, 1(1), 32–41.
  54. Open Problems in Cooperative AI.  arXiv: 2012.08630.
  55. The Complexity of Computing a Nash Equilibrium.  Communications of the ACM, 52(2), 89–97.
  56. Dawes, R. M. (1979). The robust beauty of improper linear models in decision making.  American Psychologist, 34(7), 571–582.
  57. Linear Models in Decision Making.  Psychological Bulletin, 81(2), 95–106.
  58. Dawkins, H. (2021). Marked Attribute Bias in Natural Language Inference.  In Proceedings of ACL-IJCNLP-21.
  59. Negotiating with other minds: the role of recursive theory of mind in negotiation with incomplete information.  Autonomous Agents and Multi-Agent Systems, 31, 250–287.
  60. Dennett, D. C. (1981). True Believers: The Intentional Strategy and Why It Works.  In Haugeland, J. (Ed.), Mind Design II: Philosophy, Psychology, and Artificial Intelligence. The MIT Press.
  61. Algorithm aversion: people erroneously avoid algorithms after seeing them err.  Journal of Experimental Psychology, 144, 114–126.
  62. The Difficulty of the Linda Conjunction Problem Can Be Attributed to Its Simultaneous Concrete and Unnatural Representation, and Not to Conversational Implicature.  Journal of Experimental Social Psychology, 33(1), 1–20.
  63. Unit weighting schemes for decision making.  Organizational Behavior and Human Performance, 13(2), 171–192.
  64. GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models.  arXiv: 2303.10130.
  65. Cognitive Biases: Mistakes or Missing Stakes?.  The Review of Economics and Statistics, 105(4), 1–15.
  66. Rationality and Reasoning. Taylor & Francis.
  67. Learning the preferences of bounded agents.  In Proceedings of the NeurIPS-15 Workshop on Bounded Optimality.
  68. Learning the Preferences of Ignorant, Inconsistent Agents.  In Proceedings of AAAI-15, Vol. 30.
  69. Evnine, S. J. (2001). The Universality of Logic: On the Connection between Rationality and Logical Ability.  Mind, 110(438), 335–367.
  70. Farkas, K. (2003). What is Externalism?.  Philosophical Studies, 112, 187–208.
  71. Probabilistic Policy Reuse in a Reinforcement Learning Agent.  In Proceedings of AAMAS-06, p. 720–727, New York, NY, USA.
  72. Fiorillo, C. D. (2017). Neuroscience: Rationality, uncertainty, dopamine.  Nature Human Behaviour, 1.
  73. Firestone, C. (2020). Performance vs. competence in human–machine comparisons.  Proceedings of the National Academy of Sciences, 117(43), 26562–26571.
  74. International Conference on Autonomous Agents and Multiagent Systems.  In Proceedings of the NeurIPS-15 Workshop on Bounded Optimality.
  75. Foley, R. (1987). The Theory of Epistemic Rationality. Harvard University Press.
  76. Friston, K. (2010). The free-energy principle: a unified brain theory?.  Nature Reviews Neuroscience, 11, 127–138.
  77. Fürnkranz, J. (2001). Machine learning in games: A survey.  In Fürnkranz, J.,  and Kubat, M. (Eds.), Machines that learn to play games, pp. 11–59. Nova Science Publishers.
  78. Manipulating a Learning Defender and Ways to Counteract.  In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R. (Eds.), Proceedings of NeurIPS-19, Vol. 32. Curran Associates, Inc.
  79. Ganzfried, S. (2023). Safe Equilibrium.  arXiv: 2201.04266.
  80. Game theory-based opponent modeling in large imperfect-information games.  In Proceedings of AAMAS-11.
  81. Computational rationality: A converging paradigm for intelligence in brains, minds, and machines.  Science, 349(6245), 273–278.
  82. The Effect of Modeling Human Rationality Level on Learning Rewards from Multiple Feedback Types.  In Proceedings of AAAI-23.
  83. Gigerenzer, G. (1993). The bounded rationality of probabilistic mental models.  In Manktelow, K. I.,  and Over, D. E. (Eds.), Rationality: Psychological and philosophical perspectives, pp. 284–313. Taylor & Frances/Routledge.
  84. Gigerenzer, G. (2001). Decision Making: Nonrational Theories.  International Encyclopedia of the Social and Behavioral Sciences, 5, 3304–3309.
  85. Gigerenzer, G. (2020). What is bounded rationality?.  In Viale, R. (Ed.), Routledge Handbook of Bounded Rationality, chap. 2. Routledge.
  86. Homo Heuristicus: Why Biased Minds Make Better Inferences.  Topics in Cognitive Science, 1(1), 107–143.
  87. Reasoning the fast and frugal way: models of bounded rationality.  Psychological Review, 103, 650–669.
  88. Bounded Rationality: The Adaptive Toolbox. The MIT Press.
  89. Heuristics and Biases: The Psychology of Intuitive Judgment. Cambridge University Press.
  90. Gintis, H. (2000). Beyond Homo economicus: evidence from experimental economics.  Ecological Economics, 35(3), 311–322.
  91. Biased AI Systems Produce Biased Humans.  OSF Preprints.
  92. The dangers in algorithms learning humans’ values and irrationalities.  arXiv: 2202.13985.
  93. Payoff-based Inhomogeneous Partially Irrational Play for potential game theoretic cooperative control: Convergence analysis.  In Proceedings of ACC-12, pp. 2380–2387.
  94. Grandori, A. (2010). A rational heuristic model of economic decision making.  Rationality and Society, 22(4), 477–504.
  95. BIASeD: Bringing Irrationality into Automated System Design.  arXiv: 2210.01122.
  96. Gurney, K. (2018). An introduction to neural networks. CRC press, London, UK.
  97. Rational Verification for Probabilistic Systems.  arXiv: 2107.09119.
  98. Multi-Agent Reinforcement Learning with Temporal Logic Specifications.  In Proceedings of AAMAS-21, pp. 583–592.
  99. Hammond, P. J. (1997). Rationality in Economics.  Rivista Internazionale di Scienze Sociali, 105(3), 247–288.
  100. Hanna, R. (2006). Rationality and Logic. The MIT Press.
  101. Opponent Modeling in Deep Reinforcement Learning.  In Balcan, M. F.,  and Weinberger, K. Q. (Eds.), Proceedings of ICML-16, Vol. 48, pp. 1804–1813, New York, USA.
  102. Hernandez-Orallo, J. (2000). Beyond the Turing Test.  Journal of Logic, Language and Information, 9(4), 447–466.
  103. A Reconsideration of the Theory of Value. Part I.  Economica, 1(1), 52–76.
  104. Hidalgo, C. A. (2021). How humans judge machines. MIT Press.
  105. “Take-the-Best” and Other Simple Strategies: Why and When they Work “Well” with Binary Cues.  Theory and Decision, 61, 205–249.
  106. Horvitz, E. J. (1988). Reasoning about Beliefs and Actions under Computational Resource Constraints.  In Proceedings of UAI-87, p. 429–447, Arlington, Virginia, USA.
  107. Houthakker, H. S. (1950). Revealed Preference and the Utility Function.  Economica, 17(66), 159–174.
  108. Five sources of bias in natural language processing.  Language and Linguistics Compass, 15(8).
  109. Why contextual preference reversals maximize expected value.  Psychological Review, 123(4), 368–391.
  110. Hunicke, R. (2005). The case for dynamic difficulty adjustment in games.  In Proceedings of ACE-05, Vol. 265, pp. 429–433.
  111. Automated Machine Learning, Bounded Rationality, and Rational Metareasoning.  arXiv: 2109.04744.
  112. Icard, T. (2021). Why Be Random?.  Mind, 130(517), 111–139.
  113. Evolving classification of agents’ behaviors: A general approach.  Evolving Systems, 1, 161–171.
  114. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments.  Frontiers in Psychology, 8.
  115. Reinforcement Learning: A Survey.  Journal of Artificial Intelligence Research, 4(1), 237–285.
  116. Anomalies: The Endowment Effect, Loss Aversion, and Status Quo Bias.  Journal of Economic Perspectives, 5(1), 193–206.
  117. The Psychology of Preferences.  Scientific American, 246(1), 160–173.
  118. ChatGPT for good? On opportunities and challenges of large language models for education.  Learning and Individual Differences, 103, 102274.
  119. Katsikopoulos, K. V. (2011). Psychological Heuristics for Making Inferences: Definition, Performance, and the Emerging Theory and Practice.  Decision Analysis, 8(1), 10–29.
  120. Naïve heuristics for paired comparisons: Some results on their relative accuracy.  Journal of Mathematical Psychology, 50(5), 488–494.
  121. A Policy Gradient Algorithm for Learning to Learn in Multiagent Reinforcement Learning.  In Proceedings of ICML-21, Vol. 139, pp. 5541–5550.
  122. Ranking with Partial Information: A Method and an Application.  Operations Research, 33(1), 38–48.
  123. Rationality and emotions.  Philosophical Transactions of the Royal Society, 365, 215–219.
  124. An analysis of alpha-beta pruning.  Artificial Intelligence, 6(4), 293–326.
  125. Analysis of Random Agents for Improving Market Liquidity Using Artificial Stock Market.  In Proceedings of ESSA-07.
  126. Deep Neural Networks as a Computational Model for Human Shape Sensitivity.  PLOS Computational Biology, 12(4), 1–26.
  127. When Humans Aren’t Optimal: Robots that Collaborate with Risk-Aware Humans.  In Proceedings of HRI-20.
  128. Exploration in deep reinforcement learning: A survey.  Information Fusion, 85, 1–22.
  129. The Boltzmann Policy Distribution: Accounting for Systematic Suboptimality in Human Models.  In Proceedings of ICLR-22.
  130. Lampinen, A. K. (2023). Can language models handle recursively nested grammatical structures? A case study on comparing models and humans.  arXiv: 2210.15303.
  131. Lee, C. (2021). The Game of Go: Bounded Rationality and Artificial Intelligence.  In Kiel, L.,  and Elliott, E. (Eds.), Complex Systems in the Social and Behavioral Sciences: Theory, Method and Application, chap. 5, pp. 157–180. University of Michigan Press.
  132. Leech, J. (2015). Logic and the Laws of Thought.  Philosophers’ Imprint, 15.
  133. Stable Opponent Shaping in Differentiable Games.  In Proceedings of ICLR-19.
  134. Computational Rationality: Linking Mechanism and Behavior Through Bounded Utility Maximization.  Topics in Cognitive Science, 6(2), 279–311.
  135. Essentials of Game Theory: A Concise Multidisciplinary Introduction, Vol. 2. Morgan & Claypool Publishers.
  136. Ethics of large language models in medicine and medical research.  The Lancet Digital Health, 5(6).
  137. Adversarial Distributional Reinforcement Learning against Extrapolated Generalization.  In Proceedings of EWRL-23.
  138. Robust Multi-Agent Reinforcement Learning via Minimax Deep Deterministic Policy Gradient.  In Proceedings of AAAI-19, Vol. 33, pp. 4213–4220.
  139. Littman, M. (2015). Reinforcement learning improves behaviour from evaluative feedback.  Nature, 521, 445–51.
  140. Model-Free Opponent Shaping.  In Proceedings of ICML-22.
  141. Lucas, J. R. (1961). Minds, Machines and Gödel.  Philosophy, 36(137), 112–127.
  142. Luce, R. D. (1959). Individual Choice Behavior: A Theoretical Analysis. Wiley.
  143. Rationality and Cognitive Biases in Large Language Models.  Submitted for publication.
  144. Self-incremental learning vector quantization with human cognitive biases.  Scientific Reports, 11.
  145. A Utility-Based Approach to Intention Recognition.  In Proceedings of AAMAS-04.
  146. Fast, frugal, and fit: Simple heuristics for paired comparison.  Theory and Decision, 52(1), 29–71.
  147. Martins, N. (2010). Can neuroscience inform economics? Rationality, emotions and preference formation.  Cambridge Journal of Economics, 35(2), 251–267.
  148. Maruyama, Y. (2020). Rationality, Cognitive Bias, and Artificial Intelligence: A Structural Perspective on Quantum Cognitive Science.  In Proceedings of EPCE-20, pp. 172–188.
  149. Microeconomic Theory. Oxford University Press.
  150. Expecting the unexpected: Goal recognition for rational and irrational agents.  Artificial Intelligence, 297, 103490.
  151. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955.  AI Magazine, 27(4), 12.
  152. Indecision Modeling.  In Proceedings of AAAI-21, pp. 5975–5983.
  153. Using discrete choice experiments to derive welfare estimates for the provision of elective surgery: Implications of discontinuous preferences.  Journal of Economic Psychology, 23(3), 367–382.
  154. Opponent Modelling by Expectation-Maximisation and Sequence Prediction in Simplified Poker.  IEEE Transactions on Computational Intelligence and AI in Games, 9(1), 11–24.
  155. Meeker, K. (2001). Is Hume’s Epistemology Internalist or Externalist?.  Dialogue: Canadian Philosophical Review, 40(1), 125–146.
  156. Human-level control through deep reinforcement learning.  Nature, 518(7540), 529–533.
  157. Elements of a Theory of Human Problem Solving.  Psychological Review, 65(3), 151–166.
  158. GPS, A Program that Simulates Human Thought.  In Billings, H. (Ed.), Lernende automaten, pp. 109–124.
  159. Algorithms for Inverse Reinforcement Learning.  In Proceedings of ICML-00, p. 663–670, San Francisco, CA, USA.
  160. Attribution and the psychology of prediction.  Journal of Personality and Social Psychology, 32, 932–943.
  161. Human Inference: Strategies and Shortcomings of Social Judgment. Englewood Cliffs.
  162. Bias and Fairness in Computer Vision Applications of the Criminal Justice System.  In Proceedings of SSCI-21, pp. 1–8.
  163. Nozick, R. (1993). The Nature of Rationality. Princeton University Press.
  164. O’Brien, D. P. (1993). Mental Logic and Irrationality: We Can Put a Man on the Moon, so Why Can’t We Solve Those Logical Reasoning Problems.  In Manktelow, K. I.,  and Over, D. E. (Eds.), Rationality: Psychological and Philosophical Perspectives, pp. 110–135. Routledge.
  165. Okasha, S. (2016). Biology and the Theory of Rationality.  In Smith, D. L. (Ed.), How Biology Shapes Philosophy: New Foundations for Naturalism, p. 161–183. Cambridge University Press.
  166. A Condensed Roadmap of Agents-Modelling-Agents Research.  In Proceedings of the IJCAI-05 Workshop on Modeling Other Agents from Observation.
  167. O’Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Penguin Books Limited.
  168. Osborne, M. J. (2004). An Introduction to Game Theory. Oxford University Press.
  169. Predicting eye movement patterns from fMRI responses to natural scenes.  Nature Communications, 9.
  170. Beyond Algorithmic Bias: A Socio-Computational Interrogation of the Google Search by Image Algorithm.  Social Science Computer Review, 41(4), 1100–1125.
  171. Economic Reasoning and Artificial Intelligence.  Science, 349, 267–272.
  172. A Game-Theoretic Taxonomy and Survey of Defensive Deception for Cybersecurity and Privacy.  ACM Computing Surveys, 52(4).
  173. Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to Play StarCraft Combat Games.  arXiv: 1703.10069.
  174. Penrose, R. (1989). Truth, Proof, and Insight.  In The Emperor’s New Mind: Concerning Computers, Minds, and The Laws of Physics. Oxford University Press.
  175. Artificial intelligence and the new forms of interaction: Who has the control when interacting with a chatbot?.  Journal of Business Research, 129, 878–890.
  176. Autonomous Quadrotor Landing using Deep Reinforcement Learning.  arXiv: 1709.03339.
  177. Machine behaviour.  Nature, 568, 477–486.
  178. Bayesian Inverse Reinforcement Learning.  In Proceedings of IJCAI-07, p. 2586–2591, San Francisco, CA, USA.
  179. Goal Recognition over POMDPs: Inferring the Intention of a POMDP Agent.  In Proceedings of IJCAI-11, pp. 2009–2014.
  180. Improving Generalization of Reinforcement Learning with Minimax Distributional Soft Actor-Critic.  arXiv: 2002.05502.
  181. Rozado, D. (2020). Wide range screening of algorithmic bias in word embedding models using large sentiment lexicons reveals underreported bias types.  PLoS ONE, 15(4), 1–26.
  182. Rubinstein, A. (1998). Modeling Bounded Rationality. The MIT Press.
  183. Russell, S. (2016). Rationality and Intelligence: A Brief Update.  In Müller, V. (Ed.), Fundamental Issues of Artificial Intelligence. Springer.
  184. Artificial Intelligence: A Modern Approach. Pearson Education.
  185. Provably Bounded Optimal Agents.  Journal of Artificial Intelligence Research, 2, 575–609.
  186. Russell, S. J. (1997). Rationality and intelligence.  Artificial Intelligence, 94(1), 57–77.
  187. Testing the assumptions of rationality, continuity and symmetry when applying discrete choice experiments in health care.  Applied Economics Letters, 8(1), 59–63.
  188. Rysiew, P. (2008). Rationality Disputes – Psychology and Epistemology.  Philosophy Compass, 3(6), 1153–1176.
  189. Ending the Rationality Wars: How to Make Disputes About Human Rationality Disappear.  In Elio, R. (Ed.), Common Sense, Reasoning and Rationality, pp. 236–268. Oxford University Press.
  190. Samuelson, P. A. (1938). A Note on the Pure Theory of Consumer’s Behaviour.  Economica, 5(17), 61–71.
  191. In two minds about rationality?.  In Evans, J. S. B. T.,  and Frankish, K. (Eds.), In Two Minds: Dual Processes and Beyond, pp. 317–334. Oxford University Press.
  192. Opponent Modeling in Real-Time Strategy Games.  In Proceedings of GAME‐ON-07, pp. 61–70.
  193. Schilirò, D. (2012). Bounded Rationality and Perfect Rationality: Psychology into Economics.  Theoretical and Practical Research in Economic Fields, 3, 101–111.
  194. Scholte, H. (2018). Fantastic DNimals and where to find them.  NeuroImage, 180.
  195. Bounded Rationality, Satisficing, Artificial Intelligence, and Decision-Making in Public Organizations: The Contributions of Herbert Simon.  Public Administration Review, 82(5), 902–904.
  196. Selten, R. (1975). Reexamination of the perfectness concept for equilibrium points in extensive games.  International Journal of Game Theory, 4, 25–55.
  197. Data’s Impact on Algorithmic Bias.  Computer, 56(6), 90–94.
  198. Reflexion: Language Agents with Verbal Reinforcement Learning.  arXiv: 2303.11366.
  199. Locally noisy autonomous agents improve global human coordination in network experiments.  Nature, 545, 370–374.
  200. Multi-Agent Reinforcement Learning: a critical survey.  Unpublished survey.
  201. Mastering the game of Go with deep neural networks and tree search.  Nature, 529(7587), 484–489.
  202. Simon, H. A. (1957). Models of Man: Social and Rational. Continuity in administrative science. Wiley.
  203. Simon, H. A. (1982). Models of Bounded Rationality. Volume 1: Economic Analysis and Public Policy. The MIT Press.
  204. Simsek, O. (2013). Linear decision rule as aspiration for simple decision heuristics.  In Burges, C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K. (Eds.), Proceedings of NeurIPS-13, Vol. 26.
  205. Simsek, O. (2020). Bounded rationality for artificial intelligence.  In Viale, R. (Ed.), Routledge Handbook of Bounded Rationality, chap. 15. Routledge.
  206. Why most decisions are easy in Tetris—And perhaps in other sequential decision problems, as well.  In Proceedings of ICML-16, Vol. 48, pp. 1757–1765.
  207. Learning from small samples: An analysis of simple decision heuristics.  In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R. (Eds.), Proceedings of NeurIPS-15, pp. 3159–3167.
  208. Misspecification in Inverse Reinforcement Learning.  In Proceedings of AAAI-23, Vol. 37, pp. 15136–15143.
  209. Sloman, A. (1993). The Mind as a Control System.  In Hookway, C.,  and Peterson, D. M. (Eds.), Royal Institute of Philosophy Supplement, pp. 69–110. Cambridge University Press.
  210. Sloman, S. A. (1996). The Empirical Case for Two Systems of Reasoning.  Psychological Bulletin, 119(1), 3–22.
  211. Rational actors or rational fools: implications of the affect heuristic for behavioral economics.  The Journal of Socio-Economics, 31(4), 329–342.
  212. Scalable Solutions of Interactive POMDPs Using Generalized and Bounded Policy Iteration.  Autonomous Agents and Multi-Agent Systems, 29(3), 455–494.
  213. A Survey on Gender Bias in Natural Language Processing.  arXiv: 2112.14168.
  214. Stanovich, K. (1999). Who Is Rational?: Studies of Individual Differences in Reasoning. Psychology Press.
  215. Stanovich, K. (2016). The Comprehensive Assessment of Rational Thinking.  Educational Psychologist, 51, 1–12.
  216. Intelligence and Rationality.  In Sternberg, R. J.,  and Kaufman, S. B. (Eds.), The Cambridge Handbook of Intelligence, p. 784–826. Cambridge University Press.
  217. Stein, E. (1996). Without Good Reason: The Rationality Debate in Philosophy and Cognitive Science. Clarendon Press.
  218. The impact of irrational behaviors in the optional prisoner’s dilemma with game-environment feedback.  International Journal of Robust and Nonlinear Control, 33(9), 5145–5158.
  219. An information-theoretic approach to curiosity-driven reinforcement learning.  Theory in biosciences, 131(3), 139–148.
  220. Sturm, T. (2012). The “Rationality Wars” in Psychology: Where They Are and Where They Could Go.  Inquiry, 55(1), 66–81.
  221. Sugden, R. (1991). Rational Choice: A Survey of Contributions from Economics and Philosophy.  The Economic Journal, 101(407), 751–785.
  222. A Cost Minimization Approach to Human Behavior Recognition.  In Proceedings of AAMAS-05, p. 1067–1074.
  223. Sutherland, S. (1992). Irrationality: The enemy within. Constable and Company.
  224. Event tracking in a dynamic multi-agent environment.  Computational Intelligence, 12(3), 499–522.
  225. Application of human cognitive mechanisms to Naïve Bayes text classifier.  In Proceedings of AIP-17, Vol. 1863, p. 360016.
  226. Implementation of Human Cognitive Bias on Neural Network and Its Application to Breast Cancer Diagnosis.  SICE Journal of Control, Measurement, and System Integration, 12(2), 56–64.
  227. The conjunction fallacy: A misunderstanding about conjunction?.  Cognitive Science, 28, 467–477.
  228. Assessing Rationality in Discrete Choice Experiments in Health: An Investigation into the Use of Dominance Tests.  Value in Health, 21(10), 1192–1197.
  229. Thaler, R. (1980). Toward a positive theory of consumer choice.  Journal of Economic Behavior and Organization, 1(1), 39–60.
  230. Thomson, W. (1979). Maximin strategies and elicitation of preferences.  In Laffon, J.-J. (Ed.), Aggregation and revelation of preferences, pp. 245–268. North-Holland, Amsterdam.
  231. Discovering underlying plans based on distributed representations of actions.  In Proceedings of AAMAS-16, pp. 1135–1143.
  232. Tourlakis, G. (2022). Gödel’s First Incompleteness Theorem via the Halting Problem.  In Computability. Springer.
  233. Economic irrationality is optimal during noisy decision making.  Proceedings of the National Academy of Sciences, 113(11), 3102–3107.
  234. Turing, A. M. (1950). Computing machinery and intelligence.  Mind, 59, 433–460.
  235. Belief in the law of small numbers.  Psychological Bulletin, 76, 105–110.
  236. Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment.  Psychological Review, 90, 293–315.
  237. Rational Choice and the Framing of Decisions.  The Journal of Business, 59(4), S251–S278.
  238. Anomalies: Preference Reversals.  Journal of Economic Perspectives, 4(2), 201–211.
  239. Reconciling Irrational Human Behavior with AI based Decision Making: A Quantum Probabilistic Approach.  arXiv: 1808.04600.
  240. Uzawa, H. (1960). Preference and Rational Choice in the Theory of Consumption.  In Arrow, K., Karlin, S., and Suppes, P. (Eds.), Mathematical Methods in the Social Sciences, chap. 9. Stanford University Press.
  241. Opponent modelling and commercial games.  In Proceedings of CIG-05, p. 15 – 25.
  242. Tractable Multiagent Planning for Epistemic Goals.  In Proceedings of AAMAS-02, p. 1167–1174, New York, USA.
  243. Towards a Logic of Rational Agency.  Logic Journal of the IGPL, 11(2), 135–159.
  244. Heuristic Online Goal Recognition in Continuous Domains.  In Proceedings of IJCAI-17, pp. 4447–4454.
  245. Wason, P. C. (1968). Reasoning about a Rule.  Quarterly Journal of Experimental Psychology, 20(3), 273–281.
  246. The mind in the machine: Anthropomorphism increases trust in an autonomous vehicle.  Journal of Experimental Social Psychology, 52, 113–117.
  247. Modelling Bounded Rationality in Multi-Agent Interactions by Generalized Recursive Reasoning.  In Proceedings of IJCAI-20.
  248. Wheeler, G. (2020). Bounded Rationality.  In Zalta, E. N. (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2020 edition). Metaphysics Research Lab, Stanford University.
  249. Predictive Inequity in Object Detection.  arXiv: 1902.11097.
  250. Wooldridge, M. (2000). Reasoning about Rational Agents. The MIT Press, Cambridge, Massachusetts/London.
  251. A Study of AI Population Dynamics with Million-agent Reinforcement Learning.  In Proceedings of AAMAS-18, pp. 2133–2135.
  252. Reinforcement Learning in Healthcare: A Survey.  arXiv: 1908.08796.
  253. Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms.  In Vamvoudakis, K. G., Wan, Y., Lewis, F. L., and Cansever, D. (Eds.), Handbook of Reinforcement Learning and Control, pp. 321–384. Springer, Cham.
  254. Ziebart, B. D. (2010). Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy. Ph.D. thesis, Carnegie Mellon University.
  255. Modeling Interaction via the Principle of Maximum Causal Entropy.  In Proceedings of ICML-10, p. 1255–1262.
  256. Cognitive Bias and their Implications on the Financial Market.  In International Journal of Mechanical and Mechatronics Engineering, Vol. 14.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com