Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero-shot Referring Expression Comprehension via Structural Similarity Between Images and Captions (2311.17048v3)

Published 28 Nov 2023 in cs.CV

Abstract: Zero-shot referring expression comprehension aims at localizing bounding boxes in an image corresponding to provided textual prompts, which requires: (i) a fine-grained disentanglement of complex visual scene and textual context, and (ii) a capacity to understand relationships among disentangled entities. Unfortunately, existing large vision-language alignment (VLA) models, e.g., CLIP, struggle with both aspects so cannot be directly used for this task. To mitigate this gap, we leverage large foundation models to disentangle both images and texts into triplets in the format of (subject, predicate, object). After that, grounding is accomplished by calculating the structural similarity matrix between visual and textual triplets with a VLA model, and subsequently propagate it to an instance-level similarity matrix. Furthermore, to equip VLA models with the ability of relationship understanding, we design a triplet-matching objective to fine-tune the VLA models on a collection of curated dataset containing abundant entity relationships. Experiments demonstrate that our visual grounding performance increase of up to 19.5% over the SOTA zero-shot model on RefCOCO/+/g. On the more challenging Who's Waldo dataset, our zero-shot approach achieves comparable accuracy to the fully supervised model. Code is available at https://github.com/Show-han/Zeroshot_REC.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zeyu Han (17 papers)
  2. Fangrui Zhu (9 papers)
  3. Qianru Lao (3 papers)
  4. Huaizu Jiang (38 papers)
Citations (7)
X Twitter Logo Streamline Icon: https://streamlinehq.com