Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability estimates of Nyström discretizations of Helmholtz decomposition boundary integral equation formulations for the solution of Navier scattering problems in two dimensions with Dirichlet boundary conditions (2311.17032v3)

Published 28 Nov 2023 in math.NA and cs.NA

Abstract: Helmholtz decompositions of elastic fields is a common approach for the solution of Navier scattering problems. Used in the context of Boundary Integral Equations (BIE), this approach affords solutions of Navier problems via the simpler Helmholtz boundary integral operators (BIOs). Approximations of Helmholtz Dirichlet-to-Neumann (DtN) can be employed within a regularizing combined field strategy to deliver BIE formulations of the second kind for the solution of Navier scattering problems in two dimensions with Dirichlet boundary conditions, at least in the case of smooth boundaries. Unlike the case of scattering and transmission Helmholtz problems, the approximations of the DtN maps we use in the Helmholtz decomposition BIE in the Navier case require incorporation of lower order terms in their pseudodifferential asymptotic expansions. The presence of these lower order terms in the Navier regularized BIE formulations complicates the stability analysis of their Nystr\"om discretizations in the framework of global trigonometric interpolation and the Kussmaul-Martensen kernel singularity splitting strategy. The main difficulty stems from compositions of pseudodifferential operators of opposite orders, whose Nystr\"om discretization must be performed with care via pseudodifferential expansions beyond the principal symbol. The error analysis is significantly simpler in the case of arclength boundary parametrizations and considerably more involved in the case of general smooth parametrizations which are typically encountered in the description of one dimensional closed curves.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Layer potential techniques in spectral analysis, volume 153 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2009.
  2. On the asymptotic convergence of collocation methods. Math. Comp., 41(164):349–381, 1983.
  3. Regularized combined field integral equations for acoustic transmission problems. SIAM Journal on Applied Mathematics, 75(3):929–952, 2015.
  4. Regularized combined field integral equations for acoustic transmission problems. SIAM J. Appl. Math., 75(3):929–952, 2015.
  5. High-order Nyström discretizations for the solution of integral equation formulations of two-dimensional Helmholtz transmission problems. IMA J. Numer. Anal., 36(1):463–492, 2016.
  6. High-order Nyström discretizations for the solution of integral equation formulations of two-dimensional Helmholtz transmission problems. IMA Journal of Numerical Analysis, 36(1):463–492, 03 2015.
  7. H. Brakhage and P. Werner. Über das Dirichletsche Aussenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch. Math., 16:325–329, 1965.
  8. Regularized integral equation methods for elastic scattering problems in three dimensions. Journal of Computational Physics, 410:109350, 2020.
  9. Approximate local Dirichlet-to-Neumann map for three-dimensional time-harmonic elastic waves. Computer Methods in Applied Mechanics and Engineering, 297:62–83, 2015.
  10. Analytical preconditioners for Neumann elastodynamic boundary element methods. Partial Differ. Equ. Appl., 2(2):Paper No. 22, 26, 2021.
  11. On the numerical solution of a hypersingular integral equation for elastic scattering from a planar crack. IMA journal of numerical analysis, 20(4):601–619, 2000.
  12. M. Costabel. Boundary integral operators on lipschitz domains: Elementary results. SIAM Journal on Mathematical Analysis, 19(3):613–626, 1988.
  13. A Nyström flavored Calderón calculus of order three for two dimensional waves, time-harmonic and transient. Comput. Math. Appl., 67(1):217–236, 2014.
  14. A fully discrete Calderón calculus for two dimensional time harmonic waves. Int. J. Numer. Anal. Model., 11(2):332–345, 2014.
  15. A Nyström flavored Calderón calculus of order three for two dimensional waves, time-harmonic and transient. Computers & Mathematics with Applications, 67(1):217–236, 2014.
  16. Dirac delta methods for Helmholtz transmission problems. Advances in Computational Mathematics, 28(2):119–139, 2008.
  17. A fully discrete Calderón calculus for the two-dimensional elastic wave equation. Comput. Math. Appl., 69(7):620–635, 2015.
  18. V. Domínguez and C. Turc. High order Nyström methods for transmission problems for Helmholtz equations. In Trends in differential equations and applications, volume 8 of SEMA SIMAI Springer Ser., pages 261–285. Springer, [Cham], 2016.
  19. V. Domínguez and C. Turc. Boundary integral equation methods for the solution of scattering and transmission 2D elastodynamic problems. IMA J. Appl. Math., 87(4):647–706, 2022.
  20. V. Domínguez and C. Turc. Robust boundary integral equations for the solution of elastic scattering problems via Helmholtz decompositions. arXiv preprint arXiv:2211.16168, 2023.
  21. A highly accurate boundary integral method for the elastic obstacle scattering problem. Mathematics of Computation, 90:2785–2814, 2021.
  22. General-purpose kernel regularization of boundary integral equations via density interpolation. Computer Methods in Applied Mechanics and Engineering, 378:113703, 2021.
  23. Boundary integral equations. Springer, 2008.
  24. R. Kress. On the numerical solution of a hypersingular integral equation in scattering theory. J. Comput. Appl. Math., 61(3):345–360, 1995.
  25. R. Kress. Linear Integral Equations. Applied Mathematical Sciences. Springer New York, 2013.
  26. V.D. Kupradze. Three-dimensional problems of elasticity and thermoelasticity. Elsevier, 2012.
  27. R. Kussmaul. Ein numerisches Verfahren zur Lösung des Neumannschen Außenraumproblems für die zweidimensionale Helmholtzsche Schwingungsgleichung. In Methoden und Verfahren der Mathematischen Physik, Band 1 (Bericht über eine Tagung, Oberwolfach, 1969), volume 720/720a* of B. I. Hochschulskripten, pages 15–31. Bibliographisches Inst., Mannheim-Vienna-Zürich, 1969.
  28. E. Martensen. Über eine Methode zum räumlichen Neumannschen Problem mit einer Anwendung für torusartige Berandungen. Acta Math., 109:75–135, 1963.
  29. W. McLean. Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge, 2000.
  30. K. Ruotsalainen and J. Saranen. A dual method to the collocation method. Math. Methods Appl. Sci., 10(4):439–445, 1988.
  31. J. Saranen and G. Vainikko. Periodic integral and pseudodifferential equations with numerical approximation. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2002.
  32. F.-J. Sayas et al. deltaBEM: a MATLAB-based suite for 2-D numerical computing with the boundary element method on smooth geometries and open arcs. In https://team-pancho.github.io/deltaBEM/. Accessed on Date.
  33. Qualocation methods for elliptic boundary integral equations. Numer. Math., 79(3):451–483, 1998.

Summary

We haven't generated a summary for this paper yet.