Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine learning force-field models for metallic spin glass (2311.16964v1)

Published 28 Nov 2023 in cond-mat.dis-nn, cond-mat.mtrl-sci, and cs.LG

Abstract: Metallic spin glass systems, such as dilute magnetic alloys, are characterized by randomly distributed local moments coupled to each other through a long-range electron-mediated effective interaction. We present a scalable ML framework for dynamical simulations of metallic spin glasses. A Behler-Parrinello type neural-network model, based on the principle of locality, is developed to accurately and efficiently predict electron-induced local magnetic fields that drive the spin dynamics. A crucial component of the ML model is a proper symmetry-invariant representation of local magnetic environment which is direct input to the neural net. We develop such a magnetic descriptor by incorporating the spin degrees of freedom into the atom-centered symmetry function methods which are widely used in ML force-field models for quantum molecular dynamics. We apply our approach to study the relaxation dynamics of an amorphous generalization of the s-d model. Our work highlights the promising potential of ML models for large-scale dynamical modeling of itinerant magnets with quenched disorder.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. P. G. Mezard, M. and M. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).
  2. J. A. Mydosh, Spin Glasses: An Experimental Introduction (Taylor & Francis, London, 1993).
  3. J. A. Mydosh, Spin glasses: redux: an updated experimental/materials survey, Reports on Progress in Physics 78, 052501 (2015).
  4. J. C. Dyre, Colloquium: The glass transition and elastic models of glass-forming liquids, Rev. Mod. Phys. 78, 953 (2006).
  5. S. F. Edwards and P. W. Anderson, Theory of spin glasses, Journal of Physics F: Metal Physics 5, 965 (1975).
  6. D. Sherrington and S. Kirkpatrick, Solvable model of a spin-glass, Phys. Rev. Lett. 35, 1792 (1975).
  7. P. W. A. D. J. Thouless and R. G. Palmer, Solution of ’solvable model of a spin glass’, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 35, 593 (1977).
  8. G. Parisi, Infinite number of order parameters for spin-glasses, Phys. Rev. Lett. 43, 1754 (1979).
  9. G. Parisi, Order parameter for spin-glasses, Phys. Rev. Lett. 50, 1946 (1983).
  10. H. Nishimori, Statistical Physics of Spin Glasses and Information Processing (Oxford University Press, 2001).
  11. D. L. Stein and C. M. Newman, Spin Glasses and Complexity (Princeton University Press, 2013).
  12. M. E. M. M. P. G. R.-T. F. S. G. Z. F. Charbonneau, P., ed., Spin Glass Theory and Far Beyond: Replica Symmetry Breaking After 40 Years (World Scientific, 2023).
  13. V. Cannella and J. A. Mydosh, Magnetic ordering in gold-iron alloys, Phys. Rev. B 6, 4220 (1972).
  14. M. A. Ruderman and C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev. 96, 99 (1954).
  15. T. Kasuya, A Theory of Metallic Ferro- and Antiferromagnetism on Zener’s Model, Progress of Theoretical Physics 16, 45 (1956).
  16. K. Yosida, Magnetic properties of Cu-Mn alloys, Phys. Rev. 106, 893 (1957).
  17. D. Marx and J. Hutter, Ab initio molecular dynamics: basic theory and advanced methods (Cambridge University Press, 2009).
  18. J. Behler and M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces, Phys. Rev. Lett. 98, 146401 (2007).
  19. Z. Li, J. R. Kermode, and A. De Vita, Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces, Phys. Rev. Lett. 114, 096405 (2015).
  20. A. V. Shapeev, Moment tensor potentials: A class of systematically improvable interatomic potentials, Multiscale Modeling & Simulation 14, 1153 (2016).
  21. J. S. Smith, O. Isayev, and A. E. Roitberg, Ani-1: an extensible neural network potential with dft accuracy at force field computational cost, Chem. Sci. 8, 3192 (2017).
  22. J. Behler, Perspective: Machine learning potentials for atomistic simulations, The Journal of Chemical Physics 145, 170901 (2016).
  23. C. M. A. C. G. Deringer, V. L., Machine learning interatomic potentials as emerging tools for materials science, Advanced Materials 31, 1902765 (2019).
  24. T. A. G. D. A. G.-S. K. H. F. H. C. L. K.-H. K. J. L. S. D. E. McGibbon, R. T., Improving the accuracy of möller-plesset perturbation theory with neural networks, The Journal of Chemical Physics 147, 161725 (2017).
  25. P. Zhang, P. Saha, and G.-W. Chern, Machine learning dynamics of phase separation in correlated electron magnets (2020), arXiv:2006.04205 [cond-mat.str-el] .
  26. P. Zhang and G.-W. Chern, Arrested phase separation in double-exchange models: Large-scale simulation enabled by machine learning, Phys. Rev. Lett. 127, 146401 (2021).
  27. P. Zhang, S. Zhang, and G.-W. Chern, Descriptors for machine learning model of generalized force field in condensed matter systems (2022a), arXiv:2201.00798 [cond-mat.str-el] .
  28. S. Zhang, P. Zhang, and G.-W. Chern, Anomalous phase separation in a correlated electron system: Machine-learning enabled large-scale kinetic monte carlo simulations, Proceedings of the National Academy of Sciences 119, e2119957119 (2022b).
  29. P. Zhang and G.-W. Chern, Machine learning nonequilibrium electron forces for spin dynamics of itinerant magnets, npj Computational Materials 9, 32 (2023).
  30. C. Cheng, S. Zhang, and G.-W. Chern, Machine learning for phase ordering dynamics of charge density waves, Phys. Rev. B 108, 014301 (2023a).
  31. W. Kohn, Density functional and density matrix method scaling linearly with the number of atoms, Phys. Rev. Lett. 76, 3168 (1996).
  32. E. Prodan and W. Kohn, Nearsightedness of electronic matter, Proceedings of the National Academy of Sciences 102, 11635 (2005).
  33. J. Behler, Atom-centered symmetry functions for constructing high-dimensional neural network potentials, The Journal of Chemical Physics 134, 074106 (2011).
  34. A. P. Bartók, R. Kondor, and G. Csányi, On representing chemical environments, Phys. Rev. B 87, 184115 (2013).
  35. R. Drautz, Atomic cluster expansion for accurate and transferable interatomic potentials, Phys. Rev. B 99, 014104 (2019).
  36. H. Huo and M. Rupp, Unified representation of molecules and crystals for machine learning, Machine Learning: Science and Technology 3, 045017 (2022).
  37. J. Hellsvik, Atomistic spin dynamics simulations on mn-doped gaas and cumn, Journal of Physics: Conference Series 200, 072040 (2010).
  38. O. E. Peil, A. V. Ruban, and B. Johansson, Detailed ab initio calculations of the structure and magnetic state of a metallic spin glass, New Journal of Physics 10, 083026 (2008).
  39. M. F. Ling, J. B. Staunton, and D. D. Johnson, A ’first-principles’ theory for magnetic correlations and atomic short-range order in paramagnetic alloys. ii. application to cumn, Journal of Physics: Condensed Matter 6, 6001 (1994).
  40. P. W. Anderson, Localized magnetic states in metals, Phys. Rev. 124, 41 (1961).
  41. R. Kondor, A novel set of rotationally and translationally invariant features for images based on the non-commutative bispectrum (2007), arXiv:cs/0701127 [cs.CV] .
  42. M. Eckhoff and J. Behler, High-dimensional neural network potentials for magnetic systems using spin-dependent atom-centered symmetry functions, npj Computational Materials 7, 170 (2021).
  43. M. Domina, M. Cobelli, and S. Sanvito, Spectral neighbor representation for vector fields: Machine learning potentials including spin, Phys. Rev. B 105, 214439 (2022).
  44. J. B. J. Chapman and P.-W. Ma, A machine-learned spin-lattice potential for dynamic simulations of defective magnetic iron, Scientific Reports 12, 22451 (2022).
  45. J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B 37, 6991 (1988).
  46. D. W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B 42, 9458 (1990).
  47. D. G. Pettifor and I. I. Oleinik, Analytic bond-order potentials beyond tersoff-brenner. i. theory, Phys. Rev. B 59, 8487 (1999).
  48. Y. Akagi, M. Udagawa, and Y. Motome, Hidden multiple-spin interactions as an origin of spin scalar chiral order in frustrated kondo lattice models, Phys. Rev. Lett. 108, 096401 (2012).
  49. S. Hayami, R. Ozawa, and Y. Motome, Effective bilinear-biquadratic model for noncoplanar ordering in itinerant magnets, Phys. Rev. B 95, 224424 (2017).
  50. N. Furukawa, Transport properties of the kondo lattice model in the limit s=∞𝑠s=\inftyitalic_s = ∞ and d=∞𝑑d=\inftyitalic_d = ∞, Journal of the Physical Society of Japan 63, 3214 (1994).
  51. E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance (Springer Verlag, 2003).
  52. W. Y. Ching and D. L. Huber, Numerical studies of energy levels and eigenfunction localization in dilute three-dimensional systems with exponential interactions, Phys. Rev. B 25, 1096 (1982).
  53. D. E. Logan and M. D. Winn, The density of states of a spatially disordered tight-binding model, Journal of Physics C: Solid State Physics 21, 5773 (1988).
  54. M. D. Winn and D. E. Logan, A soluble theory for the density of states of a spatially disordered system, Journal of Physics: Condensed Matter 1, 1753 (1989).
  55. J. T. Barron, Continuously differentiable exponential linear units (2017), arXiv:1704.07483 [cs.LG] .
  56. D. P. Kingma and J. Ba, Adam: A method for stochastic optimization (2017), arXiv:1412.6980 [cs.LG] .
  57. A. J. Bray, Theory of phase-ordering kinetics, Advances in Physics 43, 357 (1994).
  58. D. S. Fisher and D. A. Huse, Nonequilibrium dynamics of spin glasses, Phys. Rev. B 38, 373 (1988).
  59. D. A. Huse, Monte carlo simulation study of domain growth in an ising spin glass, Phys. Rev. B 43, 8673 (1991).

Summary

We haven't generated a summary for this paper yet.