Machine learning force-field models for metallic spin glass (2311.16964v1)
Abstract: Metallic spin glass systems, such as dilute magnetic alloys, are characterized by randomly distributed local moments coupled to each other through a long-range electron-mediated effective interaction. We present a scalable ML framework for dynamical simulations of metallic spin glasses. A Behler-Parrinello type neural-network model, based on the principle of locality, is developed to accurately and efficiently predict electron-induced local magnetic fields that drive the spin dynamics. A crucial component of the ML model is a proper symmetry-invariant representation of local magnetic environment which is direct input to the neural net. We develop such a magnetic descriptor by incorporating the spin degrees of freedom into the atom-centered symmetry function methods which are widely used in ML force-field models for quantum molecular dynamics. We apply our approach to study the relaxation dynamics of an amorphous generalization of the s-d model. Our work highlights the promising potential of ML models for large-scale dynamical modeling of itinerant magnets with quenched disorder.
- P. G. Mezard, M. and M. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).
- J. A. Mydosh, Spin Glasses: An Experimental Introduction (Taylor & Francis, London, 1993).
- J. A. Mydosh, Spin glasses: redux: an updated experimental/materials survey, Reports on Progress in Physics 78, 052501 (2015).
- J. C. Dyre, Colloquium: The glass transition and elastic models of glass-forming liquids, Rev. Mod. Phys. 78, 953 (2006).
- S. F. Edwards and P. W. Anderson, Theory of spin glasses, Journal of Physics F: Metal Physics 5, 965 (1975).
- D. Sherrington and S. Kirkpatrick, Solvable model of a spin-glass, Phys. Rev. Lett. 35, 1792 (1975).
- P. W. A. D. J. Thouless and R. G. Palmer, Solution of ’solvable model of a spin glass’, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 35, 593 (1977).
- G. Parisi, Infinite number of order parameters for spin-glasses, Phys. Rev. Lett. 43, 1754 (1979).
- G. Parisi, Order parameter for spin-glasses, Phys. Rev. Lett. 50, 1946 (1983).
- H. Nishimori, Statistical Physics of Spin Glasses and Information Processing (Oxford University Press, 2001).
- D. L. Stein and C. M. Newman, Spin Glasses and Complexity (Princeton University Press, 2013).
- M. E. M. M. P. G. R.-T. F. S. G. Z. F. Charbonneau, P., ed., Spin Glass Theory and Far Beyond: Replica Symmetry Breaking After 40 Years (World Scientific, 2023).
- V. Cannella and J. A. Mydosh, Magnetic ordering in gold-iron alloys, Phys. Rev. B 6, 4220 (1972).
- M. A. Ruderman and C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev. 96, 99 (1954).
- T. Kasuya, A Theory of Metallic Ferro- and Antiferromagnetism on Zener’s Model, Progress of Theoretical Physics 16, 45 (1956).
- K. Yosida, Magnetic properties of Cu-Mn alloys, Phys. Rev. 106, 893 (1957).
- D. Marx and J. Hutter, Ab initio molecular dynamics: basic theory and advanced methods (Cambridge University Press, 2009).
- J. Behler and M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces, Phys. Rev. Lett. 98, 146401 (2007).
- Z. Li, J. R. Kermode, and A. De Vita, Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces, Phys. Rev. Lett. 114, 096405 (2015).
- A. V. Shapeev, Moment tensor potentials: A class of systematically improvable interatomic potentials, Multiscale Modeling & Simulation 14, 1153 (2016).
- J. S. Smith, O. Isayev, and A. E. Roitberg, Ani-1: an extensible neural network potential with dft accuracy at force field computational cost, Chem. Sci. 8, 3192 (2017).
- J. Behler, Perspective: Machine learning potentials for atomistic simulations, The Journal of Chemical Physics 145, 170901 (2016).
- C. M. A. C. G. Deringer, V. L., Machine learning interatomic potentials as emerging tools for materials science, Advanced Materials 31, 1902765 (2019).
- T. A. G. D. A. G.-S. K. H. F. H. C. L. K.-H. K. J. L. S. D. E. McGibbon, R. T., Improving the accuracy of möller-plesset perturbation theory with neural networks, The Journal of Chemical Physics 147, 161725 (2017).
- P. Zhang, P. Saha, and G.-W. Chern, Machine learning dynamics of phase separation in correlated electron magnets (2020), arXiv:2006.04205 [cond-mat.str-el] .
- P. Zhang and G.-W. Chern, Arrested phase separation in double-exchange models: Large-scale simulation enabled by machine learning, Phys. Rev. Lett. 127, 146401 (2021).
- P. Zhang, S. Zhang, and G.-W. Chern, Descriptors for machine learning model of generalized force field in condensed matter systems (2022a), arXiv:2201.00798 [cond-mat.str-el] .
- S. Zhang, P. Zhang, and G.-W. Chern, Anomalous phase separation in a correlated electron system: Machine-learning enabled large-scale kinetic monte carlo simulations, Proceedings of the National Academy of Sciences 119, e2119957119 (2022b).
- P. Zhang and G.-W. Chern, Machine learning nonequilibrium electron forces for spin dynamics of itinerant magnets, npj Computational Materials 9, 32 (2023).
- C. Cheng, S. Zhang, and G.-W. Chern, Machine learning for phase ordering dynamics of charge density waves, Phys. Rev. B 108, 014301 (2023a).
- W. Kohn, Density functional and density matrix method scaling linearly with the number of atoms, Phys. Rev. Lett. 76, 3168 (1996).
- E. Prodan and W. Kohn, Nearsightedness of electronic matter, Proceedings of the National Academy of Sciences 102, 11635 (2005).
- J. Behler, Atom-centered symmetry functions for constructing high-dimensional neural network potentials, The Journal of Chemical Physics 134, 074106 (2011).
- A. P. Bartók, R. Kondor, and G. Csányi, On representing chemical environments, Phys. Rev. B 87, 184115 (2013).
- R. Drautz, Atomic cluster expansion for accurate and transferable interatomic potentials, Phys. Rev. B 99, 014104 (2019).
- H. Huo and M. Rupp, Unified representation of molecules and crystals for machine learning, Machine Learning: Science and Technology 3, 045017 (2022).
- J. Hellsvik, Atomistic spin dynamics simulations on mn-doped gaas and cumn, Journal of Physics: Conference Series 200, 072040 (2010).
- O. E. Peil, A. V. Ruban, and B. Johansson, Detailed ab initio calculations of the structure and magnetic state of a metallic spin glass, New Journal of Physics 10, 083026 (2008).
- M. F. Ling, J. B. Staunton, and D. D. Johnson, A ’first-principles’ theory for magnetic correlations and atomic short-range order in paramagnetic alloys. ii. application to cumn, Journal of Physics: Condensed Matter 6, 6001 (1994).
- P. W. Anderson, Localized magnetic states in metals, Phys. Rev. 124, 41 (1961).
- R. Kondor, A novel set of rotationally and translationally invariant features for images based on the non-commutative bispectrum (2007), arXiv:cs/0701127 [cs.CV] .
- M. Eckhoff and J. Behler, High-dimensional neural network potentials for magnetic systems using spin-dependent atom-centered symmetry functions, npj Computational Materials 7, 170 (2021).
- M. Domina, M. Cobelli, and S. Sanvito, Spectral neighbor representation for vector fields: Machine learning potentials including spin, Phys. Rev. B 105, 214439 (2022).
- J. B. J. Chapman and P.-W. Ma, A machine-learned spin-lattice potential for dynamic simulations of defective magnetic iron, Scientific Reports 12, 22451 (2022).
- J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B 37, 6991 (1988).
- D. W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B 42, 9458 (1990).
- D. G. Pettifor and I. I. Oleinik, Analytic bond-order potentials beyond tersoff-brenner. i. theory, Phys. Rev. B 59, 8487 (1999).
- Y. Akagi, M. Udagawa, and Y. Motome, Hidden multiple-spin interactions as an origin of spin scalar chiral order in frustrated kondo lattice models, Phys. Rev. Lett. 108, 096401 (2012).
- S. Hayami, R. Ozawa, and Y. Motome, Effective bilinear-biquadratic model for noncoplanar ordering in itinerant magnets, Phys. Rev. B 95, 224424 (2017).
- N. Furukawa, Transport properties of the kondo lattice model in the limit s=∞𝑠s=\inftyitalic_s = ∞ and d=∞𝑑d=\inftyitalic_d = ∞, Journal of the Physical Society of Japan 63, 3214 (1994).
- E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance (Springer Verlag, 2003).
- W. Y. Ching and D. L. Huber, Numerical studies of energy levels and eigenfunction localization in dilute three-dimensional systems with exponential interactions, Phys. Rev. B 25, 1096 (1982).
- D. E. Logan and M. D. Winn, The density of states of a spatially disordered tight-binding model, Journal of Physics C: Solid State Physics 21, 5773 (1988).
- M. D. Winn and D. E. Logan, A soluble theory for the density of states of a spatially disordered system, Journal of Physics: Condensed Matter 1, 1753 (1989).
- J. T. Barron, Continuously differentiable exponential linear units (2017), arXiv:1704.07483 [cs.LG] .
- D. P. Kingma and J. Ba, Adam: A method for stochastic optimization (2017), arXiv:1412.6980 [cs.LG] .
- A. J. Bray, Theory of phase-ordering kinetics, Advances in Physics 43, 357 (1994).
- D. S. Fisher and D. A. Huse, Nonequilibrium dynamics of spin glasses, Phys. Rev. B 38, 373 (1988).
- D. A. Huse, Monte carlo simulation study of domain growth in an ising spin glass, Phys. Rev. B 43, 8673 (1991).