Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the bias in iterative quantum amplitude estimation (2311.16560v2)

Published 28 Nov 2023 in quant-ph

Abstract: Quantum amplitude estimation (QAE) is a pivotal quantum algorithm to estimate the squared amplitude $a$ of the target basis state in a quantum state $|\Phi\rangle$. Various improvements on the original quantum phase estimation-based QAE have been proposed for resource reduction. One of such improved versions is iterative quantum amplitude estimation (IQAE), which outputs an estimate $\hat{a}$ of $a$ through the iterated rounds of the measurements on the quantum states like $Gk|\Phi\rangle$, with the number $k$ of operations of the Grover operator $G$ (the Grover number) and the shot number determined adaptively. This paper investigates the bias in IQAE. Through the numerical experiments to simulate IQAE, we reveal that the estimate by IQAE is biased and the bias is enhanced for some specific values of $a$. We see that the termination criterion in IQAE that the estimated accuracy of $\hat{a}$ falls below the threshold is a source of the bias. Besides, we observe that $k_\mathrm{fin}$, the Grover number in the final round, and $f_\mathrm{fin}$, a quantity affecting the probability distribution of measurement outcomes in the final round, are the key factors to determine the bias, and the bias enhancement for specific values of $a$ is due to the skewed distribution of $(k_\mathrm{fin},f_\mathrm{fin})$. We also present a bias mitigation method: just re-executing the final round with the Grover number and the shot number fixed.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com