Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LFSRDiff: Light Field Image Super-Resolution via Diffusion Models (2311.16517v1)

Published 27 Nov 2023 in eess.IV and cs.CV

Abstract: Light field (LF) image super-resolution (SR) is a challenging problem due to its inherent ill-posed nature, where a single low-resolution (LR) input LF image can correspond to multiple potential super-resolved outcomes. Despite this complexity, mainstream LF image SR methods typically adopt a deterministic approach, generating only a single output supervised by pixel-wise loss functions. This tendency often results in blurry and unrealistic results. Although diffusion models can capture the distribution of potential SR results by iteratively predicting Gaussian noise during the denoising process, they are primarily designed for general images and struggle to effectively handle the unique characteristics and information present in LF images. To address these limitations, we introduce LFSRDiff, the first diffusion-based LF image SR model, by incorporating the LF disentanglement mechanism. Our novel contribution includes the introduction of a disentangled U-Net for diffusion models, enabling more effective extraction and fusion of both spatial and angular information within LF images. Through comprehensive experimental evaluations and comparisons with the state-of-the-art LF image SR methods, the proposed approach consistently produces diverse and realistic SR results. It achieves the highest perceptual metric in terms of LPIPS. It also demonstrates the ability to effectively control the trade-off between perception and distortion. The code is available at \url{https://github.com/chaowentao/LFSRDiff}.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com