Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regularized Reduced Order Lippman-Schwinger-Lanczos Method for Inverse Scattering Problems in the Frequency Domain (2311.16367v1)

Published 27 Nov 2023 in math.NA and cs.NA

Abstract: Inverse scattering has a broad applicability in quantum mechanics, remote sensing, geophysical, and medical imaging. This paper presents a robust direct reduced order model (ROM) method for solving inverse scattering problems based on an efficient approximation of the resolvent operator regularizing the Lippmann-Schwinger-Lanczos (LSL) algorithm. We show that the efficiency of the method relies upon the weak dependence of the orthogonalized basis on the unknown potential in the Schr\"odinger equation by demonstrating that the Lanczos orthogonalization is equivalent to performing Gram-Schmidt on the ROM time snapshots. We then develop the LSL algorithm in the frequency domain with two levels of regularization. We show that the same procedure can be extended beyond the Schr\"odinger formulation to the Helmholtz equation, e.g., to imaging the conductivity using diffusive electromagnetic fields in conductive media with localized positive conductivity perturbations. Numerical experiments for Helmholtz and Schr\"odinger problems show that the proposed bi-level regularization scheme significantly improves the performance of the LSL algorithm, allowing for good reconstructions with noisy data and large data sets.

Summary

We haven't generated a summary for this paper yet.