Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Seeing Beyond Cancer: Multi-Institutional Validation of Object Localization and 3D Semantic Segmentation using Deep Learning for Breast MRI (2311.16213v1)

Published 27 Nov 2023 in eess.IV, cs.CV, and cs.LG

Abstract: The clinical management of breast cancer depends on an accurate understanding of the tumor and its anatomical context to adjacent tissues and landmark structures. This context may be provided by semantic segmentation methods; however, previous works have been largely limited to a singular focus on the tumor alone and rarely other tissue types. In contrast, we present a method that exploits tissue-tissue interactions to accurately segment every major tissue type in the breast including: chest wall, skin, adipose tissue, fibroglandular tissue, vasculature and tumor via standard-of-care Dynamic Contrast Enhanced MRI. Comparing our method to prior state-of-the-art, we achieved a superior Dice score on tumor segmentation while maintaining competitive performance on other studied tissues across multiple institutions. Briefly, our method proceeds by localizing the tumor using 2D object detectors, then segmenting the tumor and surrounding tissues independently using two 3D U-nets, and finally integrating these results while mitigating false positives by checking for anatomically plausible tissue-tissue contacts. The object detection models were pre-trained on ImageNet and COCO, and operated on MIP (maximum intensity projection) images in the axial and sagittal planes, establishing a 3D tumor bounding box. By integrating multiple relevant peri-tumoral tissues, our work enables clinical applications in breast cancer staging, prognosis and surgical planning.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. Zhang, J., Saha, A., Zhu, Z., and Mazurowski, M. A., “Hierarchical convolutional neural networks for segmentation of breast tumors in mri with application to radiogenomics,” IEEE Transactions on Medical Imaging 38, 435–447 (Feb. 2019).
  2. Zhang, L., Luo, Z., Chai, R., Arefan, D., Sumkin, J., and Wu, S., “Deep-learning method for tumor segmentation in breast dce-mri,” in [Medical Imaging 2019: Imaging Informatics for Healthcare, Research, and Applications ], Bak, P. R. and Chen, P.-H., eds., 14, SPIE, San Diego, United States (Mar. 2019).
  3. Hirsch, L., Huang, Y., Luo, S., Rossi Saccarelli, C., Lo Gullo, R., Daimiel Naranjo, I., Bitencourt, A. G. V., Onishi, N., Ko, E. S., Leithner, D., Avendano, D., Eskreis-Winkler, S., Hughes, M., Martinez, D. F., Pinker, K., Juluru, K., El-Rowmeim, A. E., Elnajjar, P., Morris, E. A., Makse, H. A., Parra, L. C., and Sutton, E. J., “Radiologist-level performance by using deep learning for segmentation of breast cancers on mri scans,” Radiology: Artificial Intelligence 4, e200231 (Jan. 2022).
  4. Dalmış, M. U., Litjens, G., Holland, K., Setio, A., Mann, R., Karssemeijer, N., and Gubern‐Mérida, A., “Using deep learning to segment breast and fibroglandular tissue in mri volumes,” Medical Physics 44, 533–546 (Feb. 2017).
  5. Wang, Y., Morrell, G., Heibrun, M. E., Payne, A., and Parker, D. L., “3d multi-parametric breast mri segmentation using hierarchical support vector machine with coil sensitivity correction,” Academic Radiology 20, 137–147 (Feb. 2013).
  6. Zhang, Y., Chen, J.-H., Chang, K.-T., Park, V. Y., Kim, M. J., Chan, S., Chang, P., Chow, D., Luk, A., Kwong, T., and Su, M.-Y., “Automatic breast and fibroglandular tissue segmentation in breast mri using deep learning by a fully-convolutional residual neural network u-net,” Academic Radiology 26, 1526–1535 (Nov. 2019).
  7. Kalli, S., Semine, A., Cohen, S., Naber, S. P., Makim, S. S., and Bahl, M., “American joint committee on cancer’s staging system for breast cancer, eighth edition: What the radiologist needs to know,” RadioGraphics 38, 1921–1933 (Nov. 2018).
  8. Peltonen, J. I., Mäkelä, T., Lehmonen, L., Sofiev, A., and Salli, E., “Inter- and intra-scanner variations in four magnetic resonance imaging image quality parameters,” Journal of Medical Imaging 7 (Dec. 2020).
  9. Li, W., Newitt, D. C., Gibbs, J., Wilmes, L. J., Jones, E. F., Arasu, V. A., Strand, F., Onishi, N., Nguyen, A. A.-T., Kornak, J., Joe, B. N., Price, E. R., Ojeda-Fournier, H., Eghtedari, M., Zamora, K. W., Woodard, S. A., Umphrey, H., Bernreuter, W., Nelson, M., Church, A. L., Bolan, P., Kuritza, T., Ward, K., Morley, K., Wolverton, D., Fountain, K., Lopez-Paniagua, D., Hardesty, L., Brandt, K., McDonald, E. S., Rosen, M., Kontos, D., Abe, H., Sheth, D., Crane, E. P., Dillis, C., Sheth, P., Hovanessian-Larsen, L., Bang, D. H., Porter, B., Oh, K. Y., Jafarian, N., Tudorica, A., Niell, B. L., Drukteinis, J., Newell, M. S., Cohen, M. A., Giurescu, M., Berman, E., Lehman, C., Partridge, S. C., Fitzpatrick, K. A., Borders, M. H., Yang, W. T., Dogan, B., Goudreau, S., Chenevert, T., Yau, C., DeMichele, A., Berry, D., Esserman, L. J., and Hylton, N. M., “Predicting breast cancer response to neoadjuvant treatment using multi-feature mri: results from the i-spy 2 trial,” npj Breast Cancer 6, 63 (Nov. 2020).
  10. Huang, S., Boone, J. M., Yang, K., Packard, N. J., McKenney, S. E., Prionas, N. D., Lindfors, K. K., and Yaffe, M. J., “The characterization of breast anatomical metrics using dedicated breast ct,” Medical Physics 38, 2180–2191 (Apr. 2011).
  11. Sprague, B. L., Conant, E. F., Onega, T., Garcia, M. P., Beaber, E. F., Herschorn, S. D., Lehman, C. D., Tosteson, A. N., Lacson, R., Schnall, M. D., Kontos, D., Haas, J. S., Weaver, D. L., Barlow, W. E., and on behalf of the PROSPR Consortium, “Variation in mammographic breast density assessments among radiologists in clinical practice: A multicenter observational study,” Annals of Internal Medicine 165, 457 (Oct. 2016).
  12. You, C., Kaiser, A. K., Baltzer, P., Krammer, J., Gu, Y., Peng, W., Schönberg, S. O., and Kaiser, C. G., “The assessment of background parenchymal enhancement (bpe) in a high-risk population: What causes bpe?,” Translational Oncology 11, 243–249 (Apr. 2018).
  13. Gibson, E., Li, W., Sudre, C., Fidon, L., Shakir, D. I., Wang, G., Eaton-Rosen, Z., Gray, R., Doel, T., Hu, Y., Whyntie, T., Nachev, P., Modat, M., Barratt, D. C., Ourselin, S., Cardoso, M. J., and Vercauteren, T., “Niftynet: a deep-learning platform for medical imaging,” Computer Methods and Programs in Biomedicine 158, 113–122 (May 2018).
  14. Nalepa, J., Marcinkiewicz, M., and Kawulok, M., “Data augmentation for brain-tumor segmentation: A review,” Frontiers in Computational Neuroscience 13, 83 (Dec. 2019).
  15. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H., and Xu, D., “Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images,” (Jan. 2022). arXiv:2201.01266 [cs, eess].
  16. Liu, S., Xu, D., Zhou, S. K., Mertelmeier, T., Wicklein, J., Jerebko, A., Grbic, S., Pauly, O., Cai, W., and Comaniciu, D., “3d anisotropic hybrid network: Transferring convolutional features from 2d images to 3d anisotropic volumes,” (Dec. 2017). arXiv:1711.08580 [cs].
  17. Chen, Q. and Hong, Y., “Scribble2d5: Weakly-supervised volumetric image segmentation via scribble annotations,” (July 2022). arXiv:2205.06779 [cs].
  18. Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C. C., and Lin, D., “Mmdetection: Open mmlab detection toolbox and benchmark,” (June 2019). arXiv:1906.07155 [cs, eess].
  19. He, K., Gkioxari, G., Dollar, P., and Girshick, R., “Mask r-cnn,” in [2017 IEEE International Conference on Computer Vision (ICCV) ], 2980–2988, IEEE, Venice (Oct. 2017).
  20. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B., “Swin transformer: Hierarchical vision transformer using shifted windows,” (Aug. 2021). arXiv:2103.14030 [cs].
  21. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L., “Imagenet large scale visual recognition challenge,” International Journal of Computer Vision 115, 211–252 (Dec. 2015).
  22. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I., “Attention is all you need,” (Aug. 2023). arXiv:1706.03762 [cs].
  23. Loshchilov, I. and Hutter, F., “Decoupled weight decay regularization,” (Jan. 2019). arXiv:1711.05101 [cs, math].
  24. Cardoso, M. J., Li, W., Brown, R., Ma, N., Kerfoot, E., Wang, Y., Murrey, B., Myronenko, A., Zhao, C., Yang, D., Nath, V., He, Y., Xu, Z., Hatamizadeh, A., Myronenko, A., Zhu, W., Liu, Y., Zheng, M., Tang, Y., Yang, I., Zephyr, M., Hashemian, B., Alle, S., Darestani, M. Z., Budd, C., Modat, M., Vercauteren, T., Wang, G., Li, Y., Hu, Y., Fu, Y., Gorman, B., Johnson, H., Genereaux, B., Erdal, B. S., Gupta, V., Diaz-Pinto, A., Dourson, A., Maier-Hein, L., Jaeger, P. F., Baumgartner, M., Kalpathy-Cramer, J., Flores, M., Kirby, J., Cooper, L. A. D., Roth, H. R., Xu, D., Bericat, D., Floca, R., Zhou, S. K., Shuaib, H., Farahani, K., Maier-Hein, K. H., Aylward, S., Dogra, P., Ourselin, S., and Feng, A., “Monai: An open-source framework for deep learning in healthcare,” (Nov. 2022). arXiv:2211.02701 [cs].
  25. Taghanaki, S. A., Zheng, Y., Zhou, S. K., Georgescu, B., Sharma, P., Xu, D., Comaniciu, D., and Hamarneh, G., “Combo loss: Handling input and output imbalance in multi-organ segmentation,” (Sept. 2021). arXiv:1805.02798 [cs].
  26. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S., “Pytorch: An imperative style, high-performance deep learning library,” (Dec. 2019). arXiv:1912.01703 [cs, stat].
  27. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., and Prior, F., “The cancer imaging archive (tcia): Maintaining and operating a public information repository,” Journal of Digital Imaging 26, 1045–1057 (Dec. 2013).
  28. Hylton, N. M., Gatsonis, C. A., Rosen, M. A., Lehman, C. D., Newitt, D. C., Partridge, S. C., Bernreuter, W. K., Pisano, E. D., Morris, E. A., Weatherall, P. T., Polin, S. M., Newstead, G. M., Marques, H. S., Esserman, L. J., Schnall, M. D., the ACRIN 6657 Trial Team, F., and Investigators, I.-S. . T., “Neoadjuvant chemotherapy for breast cancer: Functional tumor volume by mr imaging predicts recurrence-free survival—results from the acrin 6657/calgb 150007 i-spy 1 trial,” Radiology 279, 44–55 (Apr. 2016).
  29. Newitt, D. and Hylton, N., “Multi-center breast dce-mri data and segmentations from patients in the i-spy 1/acrin 6657 trials,” (2016).
  30. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., Buatti, J., Aylward, S., Miller, J. V., Pieper, S., and Kikinis, R., “3d slicer as an image computing platform for the quantitative imaging network,” Magnetic Resonance Imaging 30, 1323–1341 (Nov. 2012).
  31. Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J., and Maier-Hein, K. H., “nnu-net: a self-configuring method for deep learning-based biomedical image segmentation,” Nature Methods 18, 203–211 (Feb. 2021).
Citations (4)

Summary

We haven't generated a summary for this paper yet.