From Quantifier Depth to Quantifier Number: Separating Structures with k Variables (2311.15885v3)
Abstract: Given two $n$-element structures, $\mathcal{A}$ and $\mathcal{B}$, which can be distinguished by a sentence of $k$-variable first-order logic ($\mathcal{L}k$), what is the minimum $f(n)$ such that there is guaranteed to be a sentence $\phi \in \mathcal{L}k$ with at most $f(n)$ quantifiers, such that $\mathcal{A} \models \phi$ but $\mathcal{B} \not \models \phi$? We present various results related to this question obtained by using the recently introduced QVT games. In particular, we show that when we limit the number of variables, there can be an exponential gap between the quantifier depth and the quantifier number needed to separate two structures. Through the lens of this question, we will highlight some difficulties that arise in analysing the QVT game and some techniques which can help to overcome them. As a consequence, we show that $\mathcal{L}{k+1}$ is exponentially more succinct than $\mathcal{L}{k}$. We also show, in the setting of the existential-positive fragment, how to lift quantifier depth lower bounds to quantifier number lower bounds. This leads to almost tight bounds.
- An n! lower bound on formula size. ACM Trans. Comput. Log., 4(3):296–314, 2003. doi:10.1145/772062.772064.
- Eli Ben-Sasson. Hard examples for the bounded depth frege proof system. Comput. Complex., 11(3-4):109–136, 2002. URL: https://doi.org/10.1007/s00037-002-0172-5, doi:10.1007/S00037-002-0172-5.
- Eli Ben-Sasson. Size space tradeoffs for resolution. In John H. Reif, editor, Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 457–464. ACM, 2002. doi:10.1145/509907.509975.
- Near optimal separation of tree-like and general resolution. Comb., 24(4):585–603, 2004. URL: https://doi.org/10.1007/s00493-004-0036-5, doi:10.1007/S00493-004-0036-5.
- Short proofs are narrow - resolution made simple. J. ACM, 48(2):149–169, 2001. doi:10.1145/375827.375835.
- Christoph Berkholz. The propagation depth of local consistency. In Barry O’Sullivan, editor, Principles and Practice of Constraint Programming - 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings, volume 8656 of Lecture Notes in Computer Science, pages 158–173. Springer, 2014. doi:10.1007/978-3-319-10428-7_14.
- Compiling existential positive queries to bounded-variable fragments. In Dan Suciu, Sebastian Skritek, and Christoph Koch, editors, Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pages 353–364. ACM, 2019. doi:10.1145/3294052.3319693.
- Limitations of algebraic approaches to graph isomorphism testing. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science, pages 155–166. Springer, 2015. doi:10.1007/978-3-662-47672-7_13.
- Linear diophantine equations, group csps, and graph isomorphism. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 327–339. SIAM, 2017. doi:10.1137/1.9781611974782.21.
- Near-optimal lower bounds on quantifier depth and weisfeiler-leman refinement steps. J. ACM, 70(5):32:1–32:32, 2023. doi:10.1145/3195257.
- The complexity of resolution refinements. J. Symb. Log., 72(4):1336–1352, 2007. URL: https://doi.org/10.2178/jsl/1203350790, doi:10.2178/JSL/1203350790.
- An optimal lower bound on the number of variables for graph identification. Comb., 12(4):389–410, 1992. doi:10.1007/BF01305232.
- On the enumeration complexity of unions of conjunctive queries. ACM Trans. Database Syst., 46(2):5:1–5:41, 2021. doi:10.1145/3450263.
- A finer analysis of multi-structural games and beyond. CoRR, abs/2301.13329, 2023. URL: https://doi.org/10.48550/arXiv.2301.13329, arXiv:2301.13329, doi:10.48550/ARXIV.2301.13329.
- Hubie Chen. On the complexity of existential positive queries. ACM Trans. Comput. Log., 15(1):9:1–9:20, 2014. doi:10.1145/2559946.
- Counting answers to existential positive queries: A complexity classification. In Tova Milo and Wang-Chiew Tan, editors, Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 315–326. ACM, 2016. doi:10.1145/2902251.2902279.
- On limitations of the ehrenfeucht-fraisse-method in descriptive complexity. Electron. Colloquium Comput. Complex., TR13-065, 2013. URL: https://eccc.weizmann.ac.il/report/2013/065, arXiv:TR13-065.
- The ehrenfeucht-fraïssé method and the planted clique conjecture. In Lev D. Beklemishev, Andreas Blass, Nachum Dershowitz, Bernd Finkbeiner, and Wolfram Schulte, editors, Fields of Logic and Computation II - Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday, volume 9300 of Lecture Notes in Computer Science, pages 87–108. Springer, 2015. doi:10.1007/978-3-319-23534-9_5.
- Many hard examples for resolution. J. ACM, 35(4):759–768, 1988. doi:10.1145/48014.48016.
- Anuj Dawar. Finite models and finitely many variables. Banach Center Publications, 46(1):93–117, 1999.
- Andrzej Ehrenfeucht. An application of games to the completeness problem for formalized theories. Fund. Math, 49(129-141):13, 1961.
- Succinctness of order-invariant logics on depth-bounded structures. ACM Trans. Comput. Log., 18(4):33:1–33:25, 2017. doi:10.1145/3152770.
- Multi-structural games and number of quantifiers. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470756.
- On the number of quantifiers as a complexity measure. In Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, 47th International Symposium on Mathematical Foundations of Computer Science, MFCS 2022, August 22-26, 2022, Vienna, Austria, volume 241 of LIPIcs, pages 48:1–48:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.MFCS.2022.48, doi:10.4230/LIPICS.MFCS.2022.48.
- Roland Fraïssé. On some classifications of relationship systems. University of Algiers, 1954.
- Martin Fürer. Weisfeiler-lehman refinement requires at least a linear number of iterations. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, Automata, Languages and Programming, 28th International Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001, Proceedings, volume 2076 of Lecture Notes in Computer Science, pages 322–333. Springer, 2001. doi:10.1007/3-540-48224-5_27.
- Martin Grohe. Finite variable logics in descriptive complexity theory. Bull. Symb. Log., 4(4):345–398, 1998. doi:10.2307/420954.
- Martin Grohe. Equivalence in finite-variable logics is complete for polynomial time. Comb., 19(4):507–532, 1999. URL: https://doi.org/10.1007/s004939970004, doi:10.1007/S004939970004.
- The iteration number of the weisfeiler-leman algorithm. In LICS, pages 1–13, 2023. doi:10.1109/LICS56636.2023.10175741.
- The succinctness of first-order logic on linear orders. Log. Methods Comput. Sci., 1(1), 2005. doi:10.2168/LMCS-1(1:6)2005.
- The succinctness of first-order logic over modal logic via a formula size game. In Lev D. Beklemishev, Stéphane Demri, and András Maté, editors, Advances in Modal Logic 11, proceedings of the 11th conference on ”Advances in Modal Logic,” held in Budapest, Hungary, August 30 - September 2, 2016, pages 401–419. College Publications, 2016. URL: http://www.aiml.net/volumes/volume11/Hella-Vilander.pdf.
- Neil Immerman. First Order Expressibility as a New Complexity Measure. PhD thesis, Cornell University, USA, 1980.
- Neil Immerman. Number of quantifiers is better than number of tape cells. J. Comput. Syst. Sci., 22(3):384–406, 1981. doi:10.1016/0022-0000(81)90039-8.
- Neil Immerman. Upper and lower bounds for first order expressibility. J. Comput. Syst. Sci., 25(1):76–98, 1982. doi:10.1016/0022-0000(82)90011-3.
- Describing graphs: A first-order approach to graph canonization. Springer, 1990.
- Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004. URL: http://www.cs.toronto.edu/%7Elibkin/fmt, doi:10.1007/978-3-662-07003-1.
- Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H. Landweber, editors, Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May 5-7, 1982, San Francisco, California, USA, pages 137–146. ACM, 1982. doi:10.1145/800070.802186.
- Moshe Y. Vardi. On the complexity of bounded-variable queries. In Mihalis Yannakakis and Serge Abiteboul, editors, Proceedings of the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May 22-25, 1995, San Jose, California, USA, pages 266–276. ACM Press, 1995. doi:10.1145/212433.212474.