Toward a classification of PT-symmetric quantum systems: From dissipative dynamics to topology and wormholes (2311.15677v2)
Abstract: Studies of many-body non-Hermitian parity-time (PT)-symmetric quantum systems are attracting a lot of interest due to their relevance in research areas ranging from quantum optics and continuously monitored dynamics to Euclidean wormholes in quantum gravity and dissipative quantum chaos. While a symmetry classification of non-Hermitian systems leads to 38 universality classes, we show that, under certain conditions, PT-symmetric systems are grouped into 24 universality classes. We identify 14 of them in a coupled two-site Sachdev-Ye-Kitaev (SYK) model and confirm the classification by spectral analysis using exact diagonalization techniques. Intriguingly, in 4 of these 14 universality classes, AIII$\nu$, BDI$\dagger\nu$, BDI${++\nu}$, and CI${--\nu}$, we identify a basis in which the SYK Hamiltonian has a block structure in which some blocks are rectangular, with $\nu \in \mathbb{N}$ the difference between the number of rows and columns. We show analytically that this feature leads to the existence of $\nu$ robust purely \emph{real} eigenvalues, whose level statistics follow the predictions of Hermitian random matrix theory for classes A, AI, BDI, and CI, respectively. We have recently found that this $\nu$ is a topological invariant, so these classes are topological. By contrast, nontopological real eigenvalues display a crossover between Hermitian and non-Hermitian level statistics. Similarly to the case of Lindbladian dynamics, the reduction of universality classes leads to unexpected results, such as the absence of Kramers degeneracy in a given sector of the theory. Another novel feature of the classification scheme is that different sectors of the PT-symmetric Hamiltonian may have different symmetries.
- P. W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev. 109, 1492 (1958).
- A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55, 1142 (1997).
- J. Verbaarschot, Spectrum of the QCD Dirac operator and chiral random matrix theory, Phys. Rev. Lett. 72, 2531 (1994a).
- O. Bohigas, M. J. Giannoni, and C. Schmit, Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws, Phys. Rev. Lett. 52, 1 (1984).
- E. Wigner, On the statistical distribution of the widths and spacings of nuclear resonance levels, Math. Proc. Cambridge Phil. Soc. 47, 790 (1951).
- F. J. Dyson, Statistical Theory of the Energy Levels of Complex Systems. I, J. Math. Phys. 3, 140 (1962a).
- F. Dyson, Statistical Theory of the Energy Levels of Complex Systems. II, J. Math. Phys. 3, 157 (1962b).
- F. Dyson, Statistical Theory of the Energy Levels of Complex Systems. III, J. Math. Phys. 3, 166 (1962c).
- F. Dyson, The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics, J. Math. Phys. 3, 1199 (1962d).
- F. Dyson, A Class of Matrix Ensembles, J. Math. Phys. 13, 90 (1972).
- J. J. M. Verbaarschot and I. Zahed, Spectral density of the QCD Dirac operator near zero virtuality, Phys. Rev. Lett. 70, 3852 (1993).
- M. V. Berry, Semiclassical Theory of Spectral Rigidity, Proc. R. Soc. A 400, 229 (1985).
- D. R. Grempel, R. E. Prange, and S. Fishman, Quantum dynamics of a nonintegrable system, Phys. Rev. A 29, 1639 (1984).
- K. Efetov, Supersymmetry and theory of disordered metals, Adv. Phys. 32, 53 (1983).
- J. Verbaarschot, The spectrum of the Dirac operator near zero virtuality for Nc=2subscript𝑁𝑐2N_{c}=2italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = 2 and chiral random matrix theory, Nucl. Phys. B 426, 559 (1994b).
- J. Maldacena, S. H. Shenker, and D. Stanford, A bound on chaos, J. High Energy Phys. 2016 (08), 106.
- O. Bohigas and J. Flores, Two-body random hamiltonian and level density, Phys. Lett. B 34, 261 (1971a).
- J. French and S. Wong, Validity of random matrix theories for many-particle systems, Phys. Lett. B 33, 449 (1970).
- J. French and S. Wong, Some random-matrix level and spacing distributions for fixed-particle-rank interactions, Phys. Lett. B 35, 5 (1971).
- O. Bohigas and J. Flores, Spacing and individual eigenvalue distributions of two-body random hamiltonians, Phys. Lett. B 35, 383 (1971b).
- S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70, 3339 (1993).
- L. Benet, T. Rupp, and H. A. Weidenmüller, Nonuniversal Behavior of the k𝑘\mathit{k}italic_k-Body Embedded Gaussian Unitary Ensemble of Random Matrices, Phys. Rev. Lett. 87, 010601 (2001).
- J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94, 106002 (2016).
- A. M. Garc\́mathrm{i}a-Garc\́mathrm{i}a and J. J. M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94, 126010 (2016).
- Y.-Z. You, A. W. W. Ludwig, and C. Xu, Sachdev-Ye-Kitaev model and thermalization on the boundary of many-body localized fermionic symmetry-protected topological states, Phys. Rev. B 95, 115150 (2017).
- A. Altland and D. Bagrets, Quantum ergodicity in the SYK model, Nucl. Phys. B930, 45 (2018).
- T. Kanazawa and T. Wettig, Complete random matrix classification of SYK models with 𝒩𝒩\mathcal{N}caligraphic_N= 0, 1 and 2 supersymmetry, J. High Energy Phys. 2017 (9), 50.
- A. M. Garc\́mathrm{i}a-Garc\́mathrm{i}a, Y. Jia, and J. J. M. Verbaarschot, Universality and Thouless energy in the supersymmetric Sachdev-Ye-Kitaev model, Phys. Rev. D 97, 106003 (2018).
- J. Behrends, J. H. Bardarson, and B. Béri, Tenfold way and many-body zero modes in the Sachdev-Ye-Kitaev model, Phys. Rev. B 99, 195123 (2019).
- J. Behrends and B. Béri, Supersymmetry in the Standard Sachdev-Ye-Kitaev Model, Phys. Rev. Lett. 124, 236804 (2020).
- F. Sun and J. Ye, Periodic Table of the Ordinary and Supersymmetric Sachdev-Ye-Kitaev Models, Phys. Rev. Lett. 124, 244101 (2020).
- L. Sá and A. M. Garc\́mathrm{i}a-Garc\́mathrm{i}a, Q𝑄Qitalic_Q-Laguerre spectral density and quantum chaos in the Wishart-Sachdev-Ye-Kitaev model, Phys. Rev. D 105, 026005 (2022).
- P. Saad, S. H. Shenker, and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 (2019).
- P. Gao, D. L. Jafferis, and A. Wall, Traversable Wormholes via a Double Trace Deformation, J. High Energy Phys. 12 (12), 151.
- J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 (2018).
- M. A. Stephanov, Random matrix model of QCD at finite density and the nature of the quenched limit, Phys. Rev. Lett. 76, 4472 (1996).
- A. M. Halasz, J. C. Osborn, and J. J. M. Verbaarschot, Random matrix triality at nonzero chemical potential, Phys. Rev. D 56, 7059 (1997).
- J. C. Osborn, Universal results from an alternate random matrix model for QCD with a baryon chemical potential, Phys. Rev. Lett. 93, 222001 (2004).
- J. C. Osborn, K. Splittorff, and J. J. M. Verbaarschot, Chiral symmetry breaking and the Dirac spectrum at nonzero chemical potential, Phys. Rev. Lett. 94, 202001 (2005).
- T. Kanazawa and T. Wettig, New universality classes of the non-Hermitian Dirac operator in QCD-like theories, Phys. Rev. D 104, 014509 (2021).
- K. Kawabata, Y. Ashida, and M. Ueda, Information Retrieval and Criticality in Parity-Time-Symmetric Systems, Phys. Rev. Lett. 119, 190401 (2017).
- Y. Chen, X.-L. Qi, and P. Zhang, Replica wormhole and information retrieval in the SYK model coupled to Majorana chains, J. High Energy Phys. 06 (2020), 121.
- J. M. Magán, Decoherence and microscopic diffusion at the Sachdev-Ye-Kitaev model, Phys. Rev. D 98, 026015 (2018).
- A. del Campo and T. Takayanagi, Decoherence in conformal field theory, J. High Energy Phys. 2020 (2020), 1.
- T. Can, Random Lindblad dynamics, J. Phys. A: Math. Theor. 52, 485302 (2019).
- L. Sá, P. Ribeiro, and T. Prosen, Spectral and steady-state properties of random Liouvillians, J. Phys. A: Math. Theor. 53, 305303 (2020).
- L.-J. Zhai and S. Yin, Out-of-time-ordered correlator in non-Hermitian quantum systems, Phys. Rev. B 102, 054303 (2020).
- J. Li, T. Prosen, and A. Chan, Spectral Statistics of Non-Hermitian Matrices and Dissipative Quantum Chaos, Phys. Rev. Lett. 127, 170602 (2021).
- A. M. Garc\́mathrm{i}a-Garc\́mathrm{i}a, L. Sá, and J. J. M. Verbaarschot, Universality and its limits in non-Hermitian many-body quantum chaos using the Sachdev-Ye-Kitaev model, Phys. Rev. D 107, 066007 (2023a).
- P. Zhang and Z. Yu, Dynamical Transition of Operator Size Growth in Quantum Systems Embedded in an Environment, Phys. Rev. Lett. 130, 250401 (2023).
- J. Wiersig, Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection, Phys. Rev. Lett. 112, 203901 (2014).
- A. M. Garc\́mathrm{i}a-Garc\́mathrm{i}a and V. Godet, Euclidean wormhole in the Sachdev-Ye-Kitaev model, Phys. Rev. D 103, 046014 (2021).
- R. Grobe, F. Haake, and H.-J. Sommers, Quantum Distinction of Regular and Chaotic Dissipative Motion, Phys. Rev. Lett. 61, 1899 (1988).
- R. Grobe and F. Haake, Universality of cubic-level repulsion for dissipative quantum chaos, Phys. Rev. Lett. 62, 2893 (1989).
- Y. V. Fyodorov, B. A. Khoruzhenko, and H.-J. Sommers, Almost Hermitian Random Matrices: Crossover from Wigner-Dyson to Ginibre Eigenvalue Statistics, Phys. Rev. Lett. 79, 557 (1997).
- Y. V. Fyodorov and H.-J. Sommers, Random matrices close to Hermitian or unitary: overview of methods and results, J. Phys. A 36, 3303–3347 (2003).
- L. Sá, P. Ribeiro, and T. Prosen, Complex Spacing Ratios: A Signature of Dissipative Quantum Chaos, Phys. Rev. X 10, 021019 (2020b).
- D. Bernard and A. LeClair, A classification of non-hermitian random matrices, in Statistical Field Theories, edited by M. G. Cappelli A. (Springer, 2002) pp. 207–214, arXiv:0110649 .
- H. Zhou and J. Y. Lee, Periodic table for topological bands with non-Hermitian symmetries, Phys. Rev. B 99, 235112 (2019).
- A. M. Garc\́mathrm{i}a-Garc\́mathrm{i}a, L. Sá, and J. J. M. Verbaarschot, Symmetry Classification and Universality in Non-Hermitian Many-Body Quantum Chaos by the Sachdev-Ye-Kitaev Model, Phys. Rev. X 12, 021040 (2022a).
- L. Sá, P. Ribeiro, and T. Prosen, Symmetry Classification of Many-Body Lindbladians: Tenfold Way and Beyond, Phys. Rev. X 13, 031019 (2023).
- S. Lieu, M. McGinley, and N. R. Cooper, Tenfold Way for Quadratic Lindbladians, Phys. Rev. Lett. 124, 040401 (2020).
- M. Kawasaki, K. Mochizuki, and H. Obuse, Topological phases protected by shifted sublattice symmetry in dissipative quantum systems, Phys. Rev. B 106, 035408 (2022).
- A. Altland, M. Fleischhauer, and S. Diehl, Symmetry Classes of Open Fermionic Quantum Matter, Phys. Rev. X 11, 021037 (2021).
- C. M. Bender and S. Boettcher, Real Spectra in Non-Hermitian Hamiltonians Having PT𝑃𝑇PTitalic_P italic_T Symmetry, Phys. Rev. Lett. 80, 5243 (1998).
- C. M. Bender, S. Boettcher, and P. N. Meisinger, PT-symmetric quantum mechanics, J. Math. Phys. 40, 2201 (1999).
- S. Itoh, Y. Iwasaki, and T. Yoshie, The U(1) Problem and Topological Excitations on a Lattice, Phys. Rev. D 36, 527 (1987).
- C. Gattringer and I. Hip, On the spectrum of the Wilson-Dirac lattice operator in topologically nontrivial background configurations, Nucl. Phys. B 536, 363 (1998).
- P. H. Damgaard, K. Splittorff, and J. J. M. Verbaarschot, Microscopic Spectrum of the Wilson Dirac Operator, Phys. Rev. Lett. 105, 162002 (2010).
- M. Kieburg, J. J. M. Verbaarschot, and S. Zafeiropoulos, Eigenvalue Density of the non-Hermitian Wilson Dirac Operator, Phys. Rev. Lett. 108, 022001 (2012).
- G. Akemann and T. Nagao, Random matrix theory for the Hermitian Wilson Dirac operator and the chGUE-GUE transition, J. High Energy Phys. 10 (2011).
- M. Kieburg, J. J. M. Verbaarschot, and S. Zafeiropoulos, Spectral Properties of the Wilson Dirac Operator and random matrix theory, Phys. Rev. D 88, 094502 (2013).
- M. Kieburg, J. J. M. Verbaarschot, and S. Zafeiropoulos, Dirac Spectrum of the Wilson Dirac Operator for QCD with Two Colors, Phys. Rev. D 92, 045026 (2015).
- T. Kanazawa, T. Wettig, and N. Yamamoto, Chiral random matrix theory for two-color QCD at high density, Phys. Rev. D 81, 081701 (2010).
- K. Jacobs and D. A. Steck, A straightforward introduction to continuous quantum measurement, Contemp. Phys. 47, 279 (2006).
- K. Jacobs, Quantum Measurement Theory and its Applications (Cambridge University Press, Cambridge, 2014).
- H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2009).
- R. Jackiw, Lower dimensional gravity, Nucl. Phys. B 252, 343 (1985).
- C. Teitelboim, Gravitation and hamiltonian structure in two spacetime dimensions, Phys. Lett. B 126, 41 (1983).
- A. Almheiri and J. Polchinski, Models of AdS2 backreaction and holography, J. High Energy Phys. 11 (2015), 014.
- J. Maldacena, D. Stanford, and Z. Yang, Conformal symmetry and its breaking in two-dimensional nearly anti-de Sitter space, Prog. Theor. Exp. Phys. 2016, 12C104 (2016b).
- A. Garcia-Garcia and J. Verbaarschot, Chiral random matrix model for critical statistics, Nucl. Phys. B 586, 668 (2000).
- A. M. Garc\́mathrm{i}a-Garc\́mathrm{i}a, S. M. Nishigaki, and J. J. M. Verbaarschot, Critical statistics for non-Hermitian matrices, Phys. Rev. E 66, 016132 (2002).
- F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80, 1355 (2008).
- C. M. Bender, M. Berry, and A. Mandilara, Generalized PT symmetry and real spectra, J. Phys. A: Math. Gener. 35, L467 (2002).
- C. M. Bender, PT symmetry in quantum and classical physics (World Scientific, Singapore, 2019).
- L. Sá, Signatures of dissipative quantum chaos, PhD thesis, University of Lisbon [arXiv:2311.01518] (2023).
- C.-H. Liu and S. Chen, Topological classification of defects in non-Hermitian systems, Phys. Rev. B 100, 144106 (2019).
- Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv. Physics 69, 249 (2020).
- A. M. Garc\́mathrm{i}a-Garc\́mathrm{i}a and V. Godet, Half-wormholes in nearly AdS2 holography, SciPost Phys. 12, 135 (2022).
- V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups of N𝑁Nitalic_N-level systems, J. Math. Phys. 17, 821 (1976).
- G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48, 119 (1976).
- L. Sá, P. Ribeiro, and T. Prosen, Lindbladian dissipation of strongly-correlated quantum matter, Phys. Rev. Res. 4, L022068 (2022).
- A. Kulkarni, T. Numasawa, and S. Ryu, Lindbladian dynamics of the Sachdev-Ye-Kitaev model, Phys. Rev. B 106, 075138 (2022).
- R. Narayanan and H. Neuberger, A Construction of lattice chiral gauge theories, Nucl. Phys. B 443, 305 (1995).
- J. T. Chalker and B. Mehlig, Eigenvector Statistics in Non-Hermitian Random Matrix Ensembles, Phys. Rev. Lett. 81, 3367 (1998).
- V. Oganesyan and D. A. Huse, Localization of interacting fermions at high temperature, Phys. Rev. B 75, 155111 (2007).
- M. Schlosshauer, Quantum decoherence, Phys. Rep. 831, 1 (2019).
- J. Maldacena and L. Maoz, Wormholes in AdS, J. High Energy Phys. 02 (2004), 053.
- D. Harlow and D. Jafferis, The factorization problem in Jackiw-Teitelboim gravity, J. High Energy Phys. 02 (2020), 1.
- J. Maldacena, G. J. Turiaci, and Z. Yang, Two dimensional nearly de Sitter gravity, J. High Energy Phys. 2021 (139), 139.
- J. Cotler, K. Jensen, and A. Maloney, Low-dimensional de Sitter quantum gravity, J. High Energy Phys. 6 (2020).
- L. M. Sieberer, M. Buchhold, and S. Diehl, Keldysh field theory for driven open quantum systems, Rep. Prog. Phys. 79, 096001 (2016).
- A. Kamenev, Field Theory of Non-Equilibrium Systems (Cambridge University Press, Cambridge, 2023).
- T. Prosen, Third quantization: a general method to solve master equations for quadratic open Fermi systems, New J. Phys. 10, 043026 (2008).
- J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortschr. Phys. 61, 781 (2013).