Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GAN-Based LiDAR Intensity Simulation (2311.15415v1)

Published 26 Nov 2023 in cs.CV and eess.IV

Abstract: Realistic vehicle sensor simulation is an important element in developing autonomous driving. As physics-based implementations of visual sensors like LiDAR are complex in practice, data-based approaches promise solutions. Using pairs of camera images and LiDAR scans from real test drives, GANs can be trained to translate between them. For this process, we contribute two additions. First, we exploit the camera images, acquiring segmentation data and dense depth maps as additional input for training. Second, we test the performance of the LiDAR simulation by testing how well an object detection network generalizes between real and synthetic point clouds to enable evaluation without ground truth point clouds. Combining both, we simulate LiDAR point clouds and demonstrate their realism.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Richard Marcus (4 papers)
  2. Felix Gabel (1 paper)
  3. Niklas Knoop (3 papers)
  4. Marc Stamminger (31 papers)