Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
42 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
12 tokens/sec
GPT-4o
92 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
480 tokens/sec
Kimi K2 via Groq Premium
195 tokens/sec
2000 character limit reached

EulerMerge: Simplifying Euler Diagrams Through Set Merges (2311.15396v1)

Published 26 Nov 2023 in cs.CG

Abstract: Euler diagrams are an intuitive and popular method to visualize set-based data. In a Euler diagram, each set is represented as a closed curve, and set intersections are shown by curve overlaps. However, Euler diagrams are not visually scalable and automatic layout techniques struggle to display real-world data sets in a comprehensible way. Prior state-of-the-art approaches can embed Euler diagrams by splitting a closed curve into multiple curves so that a set is represented by multiple disconnected enclosed areas. In addition, these methods typically result in multiple curve segments being drawn concurrently. Both of these features significantly impede understanding. In this paper, we present a new and scalable method for embedding Euler diagrams using set merges. Our approach simplifies the underlying data to ensure that each set is represented by a single, connected enclosed area and that the diagram is drawn without curve concurrency, leading to well formed and understandable Euler diagrams.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. X. Huang and X. Liu, “Incorporating a topic model into a hypergraph neural network for searching-scenario oriented recommendations,” Applied Sciences, vol. 12, no. 15, p. 7387, 2022.
  2. Y. Wang, P. Li, and C. Yao, “Hypergraph canonical correlation analysis for multi-label classification,” Signal Processing, vol. 105, pp. 258–267, 2014.
  3. K. Wade, D. Greene, C. Lee, D. Archambault, and P. Cunningham, “Identifying representative textual sources in blog networks,” Proceedings of the International AAAI Conference on Web and Social Media, vol. 5, no. 1, pp. 393–400, Aug. 2021. [Online]. Available: https://ojs.aaai.org/index.php/ICWSM/article/view/14096
  4. S. Feng, E. Heath, B. Jefferson, C. Joslyn, H. Kvinge, H. D. Mitchell, B. Praggastis, A. J. Eisfeld, A. C. Sims, L. B. Thackray, S. Fan, K. B. Walters, P. J. Halfmann, D. Westhoff-Smith, Q. Tan, V. D. Menachery, T. P. Sheahan, A. S. Cockrell, J. F. Kocher, K. G. Stratton, N. C. Heller, L. M. Bramer, M. S. Diamond, R. S. Baric, K. M. Waters, Y. Kawaoka, J. E. McDermott, and E. Purvine, “Hypergraph models of biological networks to identify genes critical to pathogenic viral response,” BMC Bioinformatics, vol. 22, no. 287, 2021.
  5. W. Zhou and L. Nakhleh, “Properties of metabolic graphs: biological organization or representation artifacts?” BMC Bioinformatics, vol. 12, no. 132, 2011.
  6. B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and P. Rodgers, “The state-of-the-art of set visualization,” Computer Graphics Forum, vol. 35, no. 1, pp. 234–260, 2016.
  7. J. Flower and J. Howse, “Generating euler diagrams,” in Diagrammatic Representation and Inference: Second International Conference, Diagrams 2002 Callaway Gardens, GA, USA, April 18–20, 2002 Proceedings 2.   Springer, 2002, pp. 61–75.
  8. P. Rodgers, L. Zhang, and A. Fish, “General euler diagram generation,” in Diagrammatic Representation and Inference, G. Stapleton, J. Howse, and J. Lee, Eds.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 13–27.
  9. P. Simonetto and D. Auber, “Visualise undrawable euler diagrams,” in 2008 12th International Conference Information Visualisation, 2008, pp. 594–599.
  10. P. Rodgers, L. Zhang, and H. Purchase, “Wellformedness properties in euler diagrams: Which should be used?” IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 7, pp. 1089–1100, 2011.
  11. B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and P. Rodgers, “Visualizing sets and set-typed data: State-of-the-art and future challenges,” in EuroVis - STARs, R. Borgo, R. Maciejewski, and I. Viola, Eds.   The Eurographics Association, 2014.
  12. M. T. Fischer, A. Frings, D. A. Keim, and D. Seebacher, “Towards a survey on static and dynamic hypergraph visualizations,” in 2021 IEEE Visualization Conference (VIS), 2021, pp. 81–85.
  13. H. A. Kestler, A. Müller, J. M. Kraus, M. Buchholz, T. M. Gress, H. Liu, D. W. Kane, B. R. Zeeberg, and J. N. Weinstein, “VennMaster: Area-proportional euler diagrams for functional go analysis of microarrays,” BMC Bioinformatics, vol. 9, 2008.
  14. G. Stapleton, J. Flower, P. Rodgers, and J. Howse, “Automatically drawing euler diagrams with circles,” Journal of Visual Languages & Computing, vol. 23, no. 3, pp. 163–193, 2012.
  15. L. Wilkinson, “Exact and approximate area-proportional circular venn and euler diagrams,” IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 2, pp. 321–331, 2012.
  16. L. Micallef and P. Rodgers, “eulerAPE: Drawing area-proportional 3-venn diagrams using ellipses,” PLoS ONE, vol. 9, no. 7, p. e101717, 2014.
  17. G. Stapleton, P. Rodgers, J. Howse, and L. Zhang, “Inductively generating euler diagrams,” IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 1, pp. 88–100, 2011.
  18. W. Evans, P. Rza̧żewski, N. Saeedi, C.-S. Shin, and A. Wolff, “Representing graphs and hypergraphs by touching polygons in 3D,” in International Symposium on Graph Drawing and Network Visualization, 2019, pp. 18–32.
  19. B. Qu, E. Zhang, and Y. Zhang, “Automatic polygon layout for primal-dual visualization of hypergraphs,” IEEE Transactions on Visualization and Computer Graphics, vol. 28, no. 1, pp. 633–642, 2021.
  20. C. Collins, G. Penn, and S. Carpendale, “Bubble sets: Revealing set relations with isocontours over existing visualizations,” IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp. 1009–1016, 2009.
  21. A. Efrat, Y. Hu, S. G. Kobourov, and S. Pupyrev, “MapSets: Visualizing embedded and clustered graphs,” in Graph Drawing, C. Duncan and A. Symvonis, Eds.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 452–463.
  22. E. R. Gansner, Y. Hu, and S. Kobourov, “GMap: Visualizing graphs and clusters as maps,” in 2010 IEEE Pacific Visualization Symposium (PacificVis), 2010, pp. 201–208.
  23. P. Rottmann, M. Wallinger, A. Bonerath, S. Gedicke, M. Nöllenburg, and J.-H. Haunert, “MosaicSets: Embedding set systems into grid graphs,” IEEE Transactions on Visualization and Computer Graphics, vol. 29, no. 1, pp. 875–885, 2023.
  24. L. Euler, “Lettres à une princesse d’allemagne,” letters no. 102-108, 1761.
  25. S. E. Palmer, “Common region: A new principle of perceptual grouping,” Cognitive Psychology, vol. 24, no. 3, pp. 436–447, 1992.
  26. A. Blake, G. Stapleton, P. Rodgers, L. Cheek, and J. Howse, “The impact of shape on the perception of euler diagrams,” in Diagrammatic Representation and Inference, T. Dwyer, H. Purchase, and A. Delaney, Eds.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 123–137.
  27. L. Micallef, P. Dragicevic, and J.-D. Fekete, “Assessing the effect of visualizations on bayesian reasoning through crowdsourcing,” IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 12, pp. 2536–2545, 2012.
  28. B. Saket, P. Simonetto, S. Kobourov, and K. Börner, “Node, node-link, and node-link-group diagrams: An evaluation,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12, pp. 2231–2240, 2014.
  29. E. Mäkinen, “How to draw a hypergraph,” International Journal of Computer Mathematics, vol. 34, no. 3-4, pp. 177–185, 1990.
  30. R. Kehlbeck, J. Gortler, Y. Wang, and O. Deussen, “SPEULER: Semantics-preserving euler diagrams,” IEEE Transactions on Visualization and Computer Graphics, vol. 28, no. 01, pp. 433–442, jan 2022.
  31. L. Micallef and P. Rodgers, “eulerForce: Force-directed layout for euler diagrams,” Journal of Visual Languages & Computing, vol. 25, no. 6, pp. 924–934, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1045926X14000810
  32. P. Simonetto, D. Archambault, and C. Scheidegger, “A simple approach for boundary improvement of euler diagrams,” IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 678–687, 2016.
  33. P. Rodgers, G. Stapleton, and P. Chapman, “Visualizing sets with linear diagrams,” ACM Transactions on Compututer-Human Interactaction, vol. 22, no. 6, sep 2015.
  34. B. Alper, N. Riche, G. Ramos, and M. Czerwinski, “Design study of linesets, a novel set visualization technique,” IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 2259–2267, 2011.
  35. B. Jacobsen, M. Wallinger, S. Kobourov, and M. Nöllenburg, “Metrosets: Visualizing sets as metro maps,” IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 2, pp. 1257–1267, 2021.
  36. K. Dinkla, M. J. van Kreveld, B. Speckmann, and M. A. Westenberg, “Kelp diagrams: Point set membership visualization,” Computer Graphics Forum, vol. 31, no. 3pt1, pp. 875–884, 2012.
  37. W. Meulemans, N. H. Riche, B. Speckmann, B. Alper, and T. Dwyer, “KelpFusion: A hybrid set visualization technique,” IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 11, pp. 1846–1858, 2013.
  38. N. H. Riche and T. Dwyer, “Untangling euler diagrams,” IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp. 1090–1099, 2010.
  39. N. A. Arafat and S. Bressan, “Hypergraph drawing by force-directed placement,” in International Conference on Database and Expert Systems Applications, 2017, pp. 387–394.
  40. J. Paquette and T. Tokuyasu, “Hypergraph visualization and enrichment statistics: how the EGAN paradigm facilitates organic discovery from big data,” in Human Vision and Electronic Imaging XVI, B. E. Rogowitz and T. N. Pappas, Eds., vol. 7865, International Society for Optics and Photonics.   SPIE, 2011, p. 78650E.
  41. B. Alsallakh, W. Aigner, S. Miksch, and H. Hauser, “Radial sets: Interactive visual analysis of large overlapping sets,” IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 12, pp. 2496–2505, 2013.
  42. A. Kerren and I. Jusufi, “A novel radial visualization approach for undirected hypergraphs,” in Proceedings of the 17th Eurographics Conference on Visualization, Short paper track, 2013.
  43. M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and V. Subrahmanian, “Fast influence-based coarsening for large networks,” in Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, 2014, pp. 1296–1305.
  44. K. Shin, A. Ghoting, M. Kim, and H. Raghavan, “SWeG: Lossless and lossy summarization of web-scale graphs,” in The World Wide Web Conference, 2019, pp. 1679–1690.
  45. M. A. Beg, M. Ahmad, A. Zaman, and I. Khan, “Scalable approximation algorithm for graph summarization,” in Pacific-Asia Conference on Knowledge Discovery and Data Mining.   Springer, 2018, pp. 502–514.
  46. Z. Shen, K.-L. Ma, and T. Eliassi-Rad, “Visual analysis of large heterogeneous social networks by semantic and structural abstraction,” IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 6, pp. 1427–1439, 2006.
  47. K. Lee, H. Jo, J. Ko, S. Lim, and K. Shin, “SSumM: Sparse summarization of massive graphs,” Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 144–154, 2020.
  48. D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos, “VoG: Summarizing and understanding large graphs,” Proceedings of the 2014 SIAM international conference on data mining, pp. 91–99, 2014.
  49. N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos, “TimeCrunch: Interpretable dynamic graph summarization,” Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1055–1064, 2015.
  50. C. Dunne and B. Shneiderman, “Motif simplification: improving network visualization readability with fan, connector, and clique glyphs,” Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3247–3256, 2013.
  51. J. Abello, F. van Ham, and N. Krishnan, “ASK-GraphView: A large scale graph visualization system,” IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 5, pp. 669–676, 2006.
  52. D. Archambault, T. Munzner, and D. Auber, “GrouseFlocks: Steerable exploration of graph hierarchy space,” IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 4, pp. 900–913, 2008.
  53. ——, “Tugging graphs faster: Efficiently modifying path-preserving hierarchies for browsing paths,” IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 3, pp. 276–289, 2011.
  54. S. Golodetz, A. Arnab, I. Voiculescu, and S. Cameron, “Simplifying TugGraph using zipping algorithms,” Pattern Recognition, vol. 103, p. 107257, 2020.
  55. Y. Zhou, A. Rathore, E. Purvine, and B. Wang, “Topological simplifications of hypergraphs,” IEEE Transactions on Visualization and Computer Graphics (TVCG), 2022.
  56. P. Oliver, E. Zhang, and Y. Zhang, “Scalable hypergraph visualization,” IEEE Transactions on Visualization and Computer Graphics, pp. 1–11, 2023.
  57. M. Kritz and K. Perlin, “A new scheme for drawing hypergraphs,” International journal of computer mathematics, vol. 50, no. 3-4, pp. 131–134, 1994.
  58. J.-B. Lamy, “Visualizing undirected graphs and symmetric square matrices as overlapping sets,” Multimedia Tools and Applications, vol. 78, no. 23, pp. 33 091–33 112, 2019.
  59. A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister, “Upset: Visualization of intersecting sets,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12, pp. 1983–1992, 2014.
  60. R. Sadana, T. Major, A. Dove, and J. Stasko, “OnSet: A visualization technique for large-scale binary set data,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12, pp. 1993–2002, 2014.
  61. P. Valdivia, P. Buono, C. Plaisant, N. Dufournaud, and J.-D. Fekete, “Analyzing dynamic hypergraphs with Parallel Aggregated Ordered Hypergraph visualization,” IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 1, pp. 1–13, 2021.
  62. G. Stapleton, P. Rodgers, J. Howse, and J. Taylor, “Properties of Euler diagrams,” Electronic Communications of the EASST, vol. 7, 2007.
  63. P. Rodgers, “A survey of euler diagrams,” Journal of Visual Languages & Computing, vol. 25, no. 3, pp. 134–155, 2014.
  64. D. Michail, J. Kinable, B. Naveh, and J. V. Sichi, “Jgrapht—a java library for graph data structures and algorithms,” ACM Trans. Math. Softw., vol. 46, no. 2, May 2020.
  65. J. M. Boyer and W. J. Myrvold, “On the cutting edge: Simplified O⁢(n)𝑂𝑛{O}(n)italic_O ( italic_n ) planarity by edge addition,” Journal of Graph Algorithms and Applications, vol. 8, pp. 241–273, 2004.
  66. C. Kuratowski, “Sur le probleme des courbes gauches en topologie,” Fundamenta mathematicae, vol. 15, no. 1, pp. 271–283, 1930.
  67. D. S. Johnson and H. O. Pollak, “Hypergraph planarity and the complexity of drawing venn diagrams,” Journal of Graph Theory, vol. 11, no. 3, pp. 309–325, 1987. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.3190110306
  68. R. Kosara, T. J. Jankun-Kelly, and E. Chlan, “IEEE InfoVis 2007 contest: InfoVis goes to the movies,” https://eagereyes.org/blog/2007/infovis-contest-2007-data.
  69. J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset collection,” http://snap.stanford.edu/data, Jun. 2014.
  70. L. C. Freeman, “Finding social groups: A meta-analysis of the southern women data,” http://moreno.ss.uci.edu/86.pdf, 2003.
  71. B. Shneiderman, “The eyes have it: A task by data type taxonomy for information visualizations,” in Proceedings 1996 IEEE symposium on visual languages.   IEEE, 1996, pp. 336–343.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.