Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Data-Driven Approach for High-Impedance Fault Localization in Distribution Systems (2311.15168v1)

Published 26 Nov 2023 in eess.SY, cs.LG, and cs.SY

Abstract: Accurate and quick identification of high-impedance faults is critical for the reliable operation of distribution systems. Unlike other faults in power grids, HIFs are very difficult to detect by conventional overcurrent relays due to the low fault current. Although HIFs can be affected by various factors, the voltage current characteristics can substantially imply how the system responds to the disturbance and thus provides opportunities to effectively localize HIFs. In this work, we propose a data-driven approach for the identification of HIF events. To tackle the nonlinearity of the voltage current trajectory, first, we formulate optimization problems to approximate the trajectory with piecewise functions. Then we collect the function features of all segments as inputs and use the support vector machine approach to efficiently identify HIFs at different locations. Numerical studies on the IEEE 123-node test feeder demonstrate the validity and accuracy of the proposed approach for real-time HIF identification.

Summary

We haven't generated a summary for this paper yet.