Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NCL-SM: A Fully Annotated Dataset of Images from Human Skeletal Muscle Biopsies (2311.15113v1)

Published 25 Nov 2023 in cs.CV, cs.AI, cs.LG, and q-bio.TO

Abstract: Single cell analysis of human skeletal muscle (SM) tissue cross-sections is a fundamental tool for understanding many neuromuscular disorders. For this analysis to be reliable and reproducible, identification of individual fibres within microscopy images (segmentation) of SM tissue should be automatic and precise. Biomedical scientists in this field currently rely on custom tools and general ML models, both followed by labour intensive and subjective manual interventions to fine-tune segmentation. We believe that fully automated, precise, reproducible segmentation is possible by training ML models. However, in this important biomedical domain, there are currently no good quality, publicly available annotated imaging datasets available for ML model training. In this paper we release NCL-SM: a high quality bioimaging dataset of 46 human SM tissue cross-sections from both healthy control subjects and from patients with genetically diagnosed muscle pathology. These images include $>$ 50k manually segmented muscle fibres (myofibres). In addition we also curated high quality myofibre segmentations, annotating reasons for rejecting low quality myofibres and low quality regions in SM tissue images, making these annotations completely ready for downstream analysis. This, we believe, will pave the way for development of a fully automatic pipeline that identifies individual myofibres within images of tissue sections and, in particular, also classifies individual myofibres that are fit for further analysis.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. S. Wales, A. M. C Kiernan DSc, B. C. Cheah MBiostat, J. Burrell MBBS, M. C. Zoing BNurs, M. C. Kiernan, S. Vucic, B. C. Cheah, M. R. Turner, A. Eisen, O. Hardiman, J. R. Burrell, and M. C. Zoing, “Seminar Amyotrophic lateral sclerosis,” Lancet, vol. 377, pp. 942–55, 2011.
  2. M. Filippi, A. Bar-Or, F. Piehl, P. Preziosa, A. Solari, S. Vukusic, and M. A. Rocca, “Multiple sclerosis,” Nature Reviews Disease Primers, vol. 4, no. 1, p. 43, 2018.
  3. K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. Mcdonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, and C. Constantin, “Review Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management,” The Lancet Neurology, vol. 9, pp. 77–93, 2010.
  4. B. M. Morrison and J. W. Griffin, “Neuromuscular Diseases,” Cerebrospinal Fluid in Clinical Practice, pp. 121–126, 2009.
  5. Y. S. Ng and D. M. Turnbull, “Mitochondrial disease: genetics and management,” Journal of Neurology, vol. 263, 2016.
  6. M. Barends, L. Verschuren, E. Morava, V. Nesbitt, D. Turnbull, and R. McFarland, “Causes of Death in Adults with Mitochondrial Disease,” JIMD Reports, vol. 26, p. 103, 2016.
  7. C. L. Alston, M. C. Rocha, N. Z. Lax, D. M. Turnbull, and R. W. Taylor, “The genetics and pathology of mitochondrial disease,” 2017.
  8. V. Di Leo, C. Lawless, M.-P. Roussel, T. B. Gomes, G. S. Gorman, O. M. Russell, H. A. L. Tuppen, E. Duchesne, and A. E. Vincent, “Journal of Neuromuscular Diseases xx (2023) x-xx,” 2023.
  9. A. E. Vincent, H. S. Rosa, K. Pabis, C. Lawless, C. Chen, A. Grünewald, K. A. Rygiel, M. C. Rocha, A. K. Reeve, G. Falkous, V. Perissi, K. White, T. Davey, B. J. Petrof, A. A. Sayer, C. Cooper, D. Deehan, R. W. Taylor, D. M. Turnbull, and M. Picard, “Subcellular origin of mitochondrial DNA deletions in human skeletal muscle,” Annals of Neurology, vol. 84, pp. 289–301, 8 2018.
  10. C. Warren, D. McDonald, R. Capaldi, D. Deehan, R. W. Taylor, A. Filby, D. M. Turnbull, C. Lawless, and A. E. Vincent, “Decoding mitochondrial heterogeneity in single muscle fibres by imaging mass cytometry,” Scientific Reports, 2020.
  11. S. Berg, D. Kutra, T. Kroeger, C. N. Straehle, B. X. Kausler, C. Haubold, M. Schiegg, J. Ales, T. Beier, M. Rudy, K. Eren, J. I. Cervantes, B. Xu, F. Beuttenmueller, A. Wolny, C. Zhang, U. Koethe, F. A. Hamprecht, and A. Kreshuk, “ilastik: interactive machine learning for (bio)image analysis,” Nature Methods, 2019.
  12. A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang, O. Friman, D. A. Guertin, J. H. Chang, R. A. Lindquist, J. Moffat, P. Golland, and D. M. Sabatini, “CellProfiler: image analysis software for identifying and quantifying cell phenotypes,” Genome Biology, vol. 7, no. 10, p. R100, 2006.
  13. U. Schmidt, M. Weigert, C. Broaddus, and G. Myers, “Cell Detection with Star-Convex Polygons,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11071 LNCS, pp. 265–273, Springer Verlag, 2018.
  14. C. Stringer, T. Wang, M. Michaelos, and M. Pachitariu, “Cellpose: a generalist algorithm for cellular segmentation,” Nature Methods, 2020.
  15. S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image Segmentation Using Deep Learning: A Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, pp. 3523–3542, 7 2022.
  16. N. F. Greenwald, G. Miller, E. Moen, A. Kong, A. Kagel, T. Dougherty, C. Camacho Fullaway, B. J. McIntosh, K. Xuan Leow, M. Sarah Schwartz, C. Pavelchek, S. Cui, I. Camplisson, O. Bar-Tal, J. Singh, M. Fong, G. Chaudhry, Z. Abraham, J. Moseley, S. Warshawsky, E. Soon, S. Greenbaum, T. Risom, T. Hollmann, S. C. Bendall, L. Keren, W. Graf, M. Angelo, and D. Valen, “Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning,” Nature Biotechnology, 2022.
  17. L. Deng, “The MNIST database of handwritten digit images for machine learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.
  18. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “LNCS 8693 - Microsoft COCO: Common Objects in Context,” 2014.
  19. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick, “Segment Anything,” 2023.
  20. K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” 2015.
  21. K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps,” tech. rep., 2014.
  22. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE,” 2020.
  23. C. Giesen, H. A. O. Wang, D. Schapiro, N. Zivanovic, A. Jacobs, B. Hattendorf, P. J. Schüffler, D. Grolimund, J. M. Buhmann, S. Brandt, Z. Varga, P. J. Wild, D. Günther, and B. Bodenmiller, “highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry,” Articles nAture methods —, vol. 11, no. 4, p. 417, 2014.
  24. K. Im, S. Mareninov, M. Fernando, P. Diaz, and W. H. Yong, “Chapter 26 An Introduction to Performing Immunofluorescence Staining,” 2019.
  25. I. Culjak, D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek, “A brief introduction to OpenCV,” 2012.
  26. H. Huang, L. Lin, R. Tong, H. Hu, Q. Zhang, Y. Iwamoto, X. Han, Y.-W. Chen, and J. Wu, “UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation; UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation,” 2020.
  27. M. Babaie and H. R. Tizhoosh, “Deep Features for Tissue-Fold Detection in Histopathology Images,” 2019.
Citations (1)

Summary

We haven't generated a summary for this paper yet.