2000 character limit reached
Plane Multigraphs with One-Bend and Circular-Arc Edges of a Fixed Angle (2311.15043v1)
Published 25 Nov 2023 in cs.DM and math.CO
Abstract: For an angle $\alpha\in (0,\pi)$, we consider plane graphs and multigraphs in which the edges are either (i) one-bend polylines with an angle $\alpha$ between the two edge segments, or (ii) circular arcs of central angle $2(\pi-\alpha)$. We derive upper and lower bounds on the maximum density of such graphs in terms of $\alpha$. As an application, we improve upon bounds for the number of edges in $\alpha AC_1=$ graphs (i.e., graphs that can be drawn in the plane with one-bend edges such that any two crossing edges meet at angle $\alpha$). This is the first improvement on the size of $\alpha AC_1=$ graphs in over a decade.
- On RAC drawings of graphs with one bend per edge. Theor. Comput. Sci., 828-829:42–54, 2020. doi:10.1016/j.tcs.2020.04.018.
- Axis-parallel right angle crossing graphs. In Proc. 31st European Symposium on Algorithms (ESA), volume 274 of LIPIcs, pages 9:1–9:15. Schloss Dagstuhl, 2023. doi:10.4230/LIPIcs.ESA.2023.9.
- Eyal Ackerman. Quasi-planar graphs. In Seok-Hee Hong and Takeshi Tokuyama, editors, Beyond Planar Graphs: Communications of NII Shonan Meetings, chapter 2, pages 31–45. Springer, Singapore, 2020. doi:10.1007/978-981-15-6533-5_3.
- Universal point sets for drawing planar graphs with circular arcs. J. Graph Algorithms Appl., 18(3):313–324, 2014. doi:10.7155/jgaa.00324.
- Graphs that admit right angle crossing drawings. Comput. Geom., 45(4):169–177, 2012. doi:10.1016/j.comgeo.2011.11.008.
- Graphs that admit polyline drawings with few crossing angles. SIAM J. Discret. Math., 26(1):305–320, 2012. doi:10.1137/100819564.
- On the maximum number of edges in quasi-planar graphs. J. Comb. Theory, Ser. A, 114(3):563–571, 2007. doi:10.1016/j.jcta.2006.08.002.
- Superpatterns and universal point sets. J. Graph Algorithms Appl., 18(2):177–209, 2014. doi:10.7155/jgaa.00318.
- On smooth orthogonal and octilinear drawings: Relations, complexity and Kandinsky drawings. Algorithmica, 81(5):2046–2071, 2019. doi:10.1007/s00453-018-0523-5.
- Drawing graphs with circular arcs and right-angle crossings. In Proc. 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), volume 162 of LIPIcs, pages 21:1–21:14. Schloss Dagstuhl, 2020. doi:10.4230/LIPIcs.SWAT.2020.21.
- Drawing graphs with right angle crossings. Theor. Comput. Sci., 412(39):5156–5166, 2011. doi:10.1016/j.tcs.2011.05.025.
- Notes on large angle crossing graphs. Chic. J. Theor. Comput. Sci., 2011, 2011. URL: http://cjtcs.cs.uchicago.edu/articles/CATS2010/4/contents.html.
- Walter Didimo. Right angle crossing drawings of graphs. In Seok-Hee Hong and Takeshi Tokuyama, editors, Beyond Planar Graphs, Communications of NII Shonan Meetings, pages 149–169. Springer, 2020. doi:10.1007/978-981-15-6533-5_9.
- A survey on graph drawing beyond planarity. ACM Comput. Surv., 52(1):4:1–4:37, 2019. doi:10.1145/3301281.
- Angles of planar triangular graphs. SIAM J. Discrete Mathematics, 9(3):349–359, 1996. doi:10.1137/S0895480194264010.
- Polygons with prescribed angles in 2D and 3D. J. Graph Algorithms Appl., 26(3):363–380, 2022. doi:10.7155/jgaa.00599.
- Universal sets of n points for one-bend drawings of planar graphs with n vertices. Discret. Comput. Geom., 43(2):272–288, 2010. doi:10.1007/s00454-009-9149-3.
- Ashim Garg. New results on drawing angle graphs. Computational Geometry, 9(1):43–82, 1998. doi:10.1016/S0925-7721(97)00016-3.
- Linear-size universal point sets for one-bend drawings. In Proc. 23rd Sympos. Graph Drawing and Network Visualization (GD), volume 9411 of LNCS, pages 423–429. Springer, 2015. doi:10.1007/978-3-319-27261-0_35.
- Csaba D. Tóth. On RAC drawings of graphs with two bends per edge. In Proc. 31st Sympos. Graph Drawing and Network Visualization (GD), LNCS. Springer, 2023. To appear. arXiv:2308.02663v2, doi:10.48550/arXiv.2308.02663.
- Gopalakrishnan Vijayan. Geometry of planar graphs with angles. In Proc. 2nd Symposium on Computational Geometry (SoCG), pages 116–124, New York, NY, 1986. ACM Press. doi:10.1145/10515.10528.