Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Careful Synchronization of One-Cluster Automata (2311.15020v1)

Published 25 Nov 2023 in cs.FL and cs.CC

Abstract: In this paper we investigate careful synchronization of one-cluster partial automata. First we prove that in general case the shortest carefully synchronizing word for such automata is of length $2\frac{n}{2} + 1$, where $n$ is the number of states of an automaton. Additionally we prove that checking whether a given one-cluster partial automaton is carefully synchronizing is NP-hard even in the case of binary alphabet.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. A quadratic upper bound on the size of a synchronizing word in one-cluster automata. In Volker Diekert and Dirk Nowotka, editors, Developments in Language Theory, pages 81–90, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.
  2. M. Berlinkov. On Two Algorithmic Problems about Synchronizing Automata. Language and Automata Theory and Applications, pages 61–67, 2014.
  3. M. Berlinkov and M. Szykuła. Algebraic Synchronization Criterion and Computing Reset Words. Information Sciences, 369:718–730, 2016.
  4. Synchronizing Strongly Connected Partial DFAs. In Markus Bläser and Benjamin Monmege, editors, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021), volume 187 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–12:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2021/13657, doi:10.4230/LIPIcs.STACS.2021.12.
  5. M. T. Biskup and W. Plandowski. Shortest Synchronizing Strings for Huffman Codes. Theoretical Computer Science, 410:3925–3941, 2009.
  6. Robust Synchronization in Markov Decision Processes. CONCUR, pages 234–248, 2014.
  7. The Complexity of Synchronizing Markov Decision Processes. J. Comput. Syst. Sci., 100:96–129, 2019.
  8. D. Eppstein. Reset Sequences for Monotonic Automata. SIAM J. of Computing, 19:500–510, 1990.
  9. B. Imreh and M. Steinby. Directable Nondeterministic Automata. Acta Cybern., 14:105–115, 1999.
  10. M. Ito and K. Shikishima-Tsuji. Some Results in Directable Automata. Theory Is Forever. Essays Dedicated to Arto Salomaa on the Occasion of His 70th Birthday [Lect. Notes Comp. Sci 3113], pages 125–133, 2004.
  11. H. Jürgensen. Synchronization. Information and Computation, 206:1033–1044, 2008.
  12. J. Kari. A Counter Example to a Conjecture Concerning Synchronizing Word in Finite Automata. EATCS Bulletin, 73:146–147, 2001.
  13. J. Kari. Synchronizing Finite Automata on Eulerian Digraphs. Theoretical Computer Science, 295:223–232, 2003.
  14. Lower bounds for synchronizing word lengths in partial automata. International Journal of Foundations of Computer Science, 30:29–60, 2019.
  15. P. Martyugin. Computational Complexity of Certain Problems Related to Carefully Synchronizing Words for Partial Automata and Directing Words for Nondeterministic Automata. Theory Comput Syst, 54:293–304, 2014. doi:10.1007/s00224-013-9516-6.
  16. P.V. Martyugin. A Lower Bound for the Length of the Shortest Carefully Synchronizing Words. Russian Mathematics, 54:46–54, 2010.
  17. P.V. Martyugin. Careful Synchronization of Partial Automata with Restricted Alphabets. Computer Science – Theory and Applications. CSR 2013. Lecture Notes in Computer Science, 7913, 2013.
  18. B. K. Natarajan. An Algorithmic Approach to the Automated Design of Parts Orienters. Foundations of Computer Science, 27th Annual Symposium on, pages 132–142, 1986.
  19. J. E. Pin. On Two Combinatorial Problems Arising from Automata Theory. Proceedings of the International Colloquium on Graph Theory and Combinatorics, 75:535–548, 1983.
  20. I. K. Rystsov. Asymptotic Estimate of the Length of a Diagnostic Word for a Finite Automaton. Cybernetics, 16:194–198, 1980.
  21. I. K. Rystsov. Reset Words for Commutative and Solvable Automata. Theoretical Computer Science, 172:273–279, 1997.
  22. S. Sandberg. Homing and Synchronizing Sequences. Model-Based Testing of Reactive Systems, 3472:5–33, 2005.
  23. Benjamin Steinberg. The Černý conjecture for one-cluster automata with prime length cycle. Theoretical Computer Science, 412(39):5487–5491, 2011.
  24. M. Szykuła. Improving the Upper Bound on the Length of the Shortest Reset Word. STACS 2018, pages 56:1–56:13, 2018.
  25. A. Trahtman. The Černý Conjecture for Aperiodic Automata. Discrete Math. Theor. Comput. Sci., 9:3–10, 2007.
  26. J. Černý. Poznámka k homogénnym eksperimentom s konečnými automatami. Mat.-Fyz. Cas. Slovens.Akad. Vied., 14:208–216, 1964.
  27. M. Volkov. Synchronizing Automata and the Černý Conjecture. Language and Automata Theory and Applications, 5196:11–27, 2008.
  28. M. Volkov. Slowly Synchronizing Automata with Idempotent Letters of Low Rank. Journal of Automata, Languages and Combinatorics, 24:375–386, 2019.
  29. V. Vorel. Subset synchronization and careful synchronization of binary finite automata. Jour. Found. Comput. Sci., 27:557–578, 2016.
  30. S. Ivan Z. Gazdag and J. Nagy-Gyorgy. Improved Upper Bounds on Synchronizing Nondeterministic Automata. Information Processing Letters, 109:986–990, 2009.
Citations (1)

Summary

We haven't generated a summary for this paper yet.