Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Completeness of Riemannian metrics: an application to the control of constrained mechanical systems (2311.14969v1)

Published 25 Nov 2023 in eess.SY, cs.SY, math.DG, and math.DS

Abstract: We introduce a mathematical technique based on modifying a given Riemannian metric and we investigate its applicability to controlling and stabilizing constrained mechanical systems. In essence our result is based on the construction of a complete Riemannian metric in the modified space where the constraint is included. In particular this can be applied to the controlled Lagrangians technique Bloch et al. [2000b, 2001] modifying its metric to additionally cover mechanical systems with configuration constraints via control. The technique used consists of approximating incomplete Riemannian metrics by complete ones, modifying the evolution near a boundary and finding a controller satisfying a given design criterion.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. R. Abraham and J.E. Marsden. Foundations of mechanics. Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged, With the assistance of Tudor Raţiu and Richard Cushman.
  2. Stabilisation of state-and-input constrained nonlinear systems via diffeomorphisms: A sontag’s formula approach with an actual application. International Journal of Robust and Nonlinear Control, 28(13):4032–4044, 2018. doi: https://doi.org/10.1002/rnc.4119.
  3. Dissipation induced instabilities. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 11(1):37–90, 1994. ISSN 0294-1449. doi: https://doi.org/10.1016/S0294-1449(16)30196-2.
  4. Controlled lagrangians and the stabilization of mechanical systems. i. the first matching theorem. IEEE Transactions on Automatic Control, 45(12):2253–2270, 2000a. doi: 10.1109/9.895562.
  5. Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem. IEEE Trans. Automat. Control, 45(12):2253–2270, 2000b. ISSN 0018-9286. doi: 10.1109/9.895562. URL https://doi.org/10.1109/9.895562.
  6. Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping. IEEE Trans. Automat. Control, 46(10):1556–1571, 2001. ISSN 0018-9286. doi: 10.1109/9.956051. URL https://doi.org/10.1109/9.956051.
  7. B. Brogliato. Nonsmooth Mechanics, volume 29 of Communications and Control Engineering. Springer London, 1999. ISBN 978-1-4471-1161-0.
  8. Geometric control of mechanical systems, volume 49 of Texts in Applied Mathematics. Springer-Verlag, New York, 2005. ISBN 0-387-22195-6. doi: 10.1007/978-1-4899-7276-7. URL https://doi.org/10.1007/978-1-4899-7276-7. Modeling, analysis, and design for simple mechanical control systems.
  9. Completeness of trajectories of relativistic particles under stationary magnetic fields. Int. J. Geom. Methods Mod. Phys., 10(8):1360007, 8, 2013a. ISSN 0219-8878. doi: 10.1142/S0219887813600074. URL https://doi.org/10.1142/S0219887813600074.
  10. Completeness of the trajectories of particles coupled to a general force field. Arch. Ration. Mech. Anal., 208(1):255–274, 2013b. ISSN 0003-9527. doi: 10.1007/s00205-012-0596-2. URL https://doi.org/10.1007/s00205-012-0596-2.
  11. M. P. do Carmo. Riemannian geometry. Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, 1992. ISBN 0-8176-3490-8. doi: 10.1007/978-1-4757-2201-7. URL https://doi.org/10.1007/978-1-4757-2201-7. Translated from the second Portuguese edition by Francis Flaherty.
  12. Quadrants of Riemannian metrics. Michigan Math. J., 25(1):3–7, 1978. ISSN 0026-2285. URL http://projecteuclid.org/euclid.mmj/1029002001.
  13. William B. Gordon. On the completeness of Hamiltonian vector fields. Proc. Amer. Math. Soc., 26:329–331, 1970. ISSN 0002-9939. doi: 10.2307/2036398. URL https://doi.org/10.2307/2036398.
  14. William B. Gordon. An analytical criterion for the completeness of Riemannian manifolds. Proc. Amer. Math. Soc., 37:221–225, 1973. ISSN 0002-9939. doi: 10.2307/2038738. URL https://doi.org/10.2307/2038738.
  15. William B. Gordon. Corrections to: “An analytical criterion for the completeness of Riemannian manifolds” (Proc. Amer. Math. Soc. 37 (1973), 221–225). Proc. Amer. Math. Soc., 45:130–131, 1974. ISSN 0002-9939. doi: 10.2307/2040621. URL https://doi.org/10.2307/2040621.
  16. Passivation of underactuated systems with physical damping. IFAC Proceedings Volumes, 37(13):955–960, 2004. ISSN 1474-6670. doi: https://doi.org/10.1016/S1474-6670(17)31349-6. 6th IFAC Symposium on Nonlinear Control Systems 2004 (NOLCOS 2004), Stuttgart, Germany, 1-3 September, 2004.
  17. Philip Hartman. Ordinary differential equations, volume 38 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. ISBN 0-89871-510-5. doi: 10.1137/1.9780898719222. URL https://doi.org/10.1137/1.9780898719222. Corrected reprint of the second (1982) edition [Birkhäuser, Boston, MA; MR0658490 (83e:34002)], With a foreword by Peter Bates.
  18. On the design of region-avoiding metrics for collision-safe motion generation on riemannian manifolds. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2023.
  19. J. Milnor. Morse theory. Annals of Mathematics Studies, No. 51. Princeton University Press, Princeton, N.J., 1963. Based on lecture notes by M. Spivak and R. Wells.
  20. Ettore Minguzzi. Completeness of first and second order ODE flows and of Euler-Lagrange equations. J. Geom. Phys., 97:156–165, 2015. ISSN 0393-0440. doi: 10.1016/j.geomphys.2015.06.010. URL https://doi.org/10.1016/j.geomphys.2015.06.010.
  21. The existence of complete Riemannian metrics. Proc. Amer. Math. Soc., 12:889–891, 1961. ISSN 0002-9939. doi: 10.2307/2034383. URL https://doi.org/10.2307/2034383.
  22. A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Transactions on Automatic Control, 52(8):1415–1428, 2007. doi: 10.1109/TAC.2007.902736.
  23. Stabilization with guaranteed safety using control lyapunov–barrier function. Automatica, 66:39–47, 2016.
  24. Barrier lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 45(4):918–927, 2009. ISSN 0005-1098. doi: https://doi.org/10.1016/j.automatica.2008.11.017. URL https://www.sciencedirect.com/science/article/pii/S0005109808005608.
  25. A comparision theorem for Hamiltonian vector fields. Proc. Amer. Math. Soc., 26:629–631, 1970. ISSN 0002-9939. doi: 10.2307/2037123. URL https://doi.org/10.2307/2037123.
  26. Constructive safety using control barrier functions. IFAC Proceedings Volumes, 40(12):462–467, 2007.
  27. Physical dissipation and the method of controlled lagrangians. In 2001 European Control Conference (ECC), pages 2570–2575, 2001. doi: 10.23919/ECC.2001.7076315.

Summary

We haven't generated a summary for this paper yet.