2000 character limit reached
Completeness of Riemannian metrics: an application to the control of constrained mechanical systems (2311.14969v1)
Published 25 Nov 2023 in eess.SY, cs.SY, math.DG, and math.DS
Abstract: We introduce a mathematical technique based on modifying a given Riemannian metric and we investigate its applicability to controlling and stabilizing constrained mechanical systems. In essence our result is based on the construction of a complete Riemannian metric in the modified space where the constraint is included. In particular this can be applied to the controlled Lagrangians technique Bloch et al. [2000b, 2001] modifying its metric to additionally cover mechanical systems with configuration constraints via control. The technique used consists of approximating incomplete Riemannian metrics by complete ones, modifying the evolution near a boundary and finding a controller satisfying a given design criterion.
- R. Abraham and J.E. Marsden. Foundations of mechanics. Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged, With the assistance of Tudor Raţiu and Richard Cushman.
- Stabilisation of state-and-input constrained nonlinear systems via diffeomorphisms: A sontag’s formula approach with an actual application. International Journal of Robust and Nonlinear Control, 28(13):4032–4044, 2018. doi: https://doi.org/10.1002/rnc.4119.
- Dissipation induced instabilities. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 11(1):37–90, 1994. ISSN 0294-1449. doi: https://doi.org/10.1016/S0294-1449(16)30196-2.
- Controlled lagrangians and the stabilization of mechanical systems. i. the first matching theorem. IEEE Transactions on Automatic Control, 45(12):2253–2270, 2000a. doi: 10.1109/9.895562.
- Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem. IEEE Trans. Automat. Control, 45(12):2253–2270, 2000b. ISSN 0018-9286. doi: 10.1109/9.895562. URL https://doi.org/10.1109/9.895562.
- Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping. IEEE Trans. Automat. Control, 46(10):1556–1571, 2001. ISSN 0018-9286. doi: 10.1109/9.956051. URL https://doi.org/10.1109/9.956051.
- B. Brogliato. Nonsmooth Mechanics, volume 29 of Communications and Control Engineering. Springer London, 1999. ISBN 978-1-4471-1161-0.
- Geometric control of mechanical systems, volume 49 of Texts in Applied Mathematics. Springer-Verlag, New York, 2005. ISBN 0-387-22195-6. doi: 10.1007/978-1-4899-7276-7. URL https://doi.org/10.1007/978-1-4899-7276-7. Modeling, analysis, and design for simple mechanical control systems.
- Completeness of trajectories of relativistic particles under stationary magnetic fields. Int. J. Geom. Methods Mod. Phys., 10(8):1360007, 8, 2013a. ISSN 0219-8878. doi: 10.1142/S0219887813600074. URL https://doi.org/10.1142/S0219887813600074.
- Completeness of the trajectories of particles coupled to a general force field. Arch. Ration. Mech. Anal., 208(1):255–274, 2013b. ISSN 0003-9527. doi: 10.1007/s00205-012-0596-2. URL https://doi.org/10.1007/s00205-012-0596-2.
- M. P. do Carmo. Riemannian geometry. Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, 1992. ISBN 0-8176-3490-8. doi: 10.1007/978-1-4757-2201-7. URL https://doi.org/10.1007/978-1-4757-2201-7. Translated from the second Portuguese edition by Francis Flaherty.
- Quadrants of Riemannian metrics. Michigan Math. J., 25(1):3–7, 1978. ISSN 0026-2285. URL http://projecteuclid.org/euclid.mmj/1029002001.
- William B. Gordon. On the completeness of Hamiltonian vector fields. Proc. Amer. Math. Soc., 26:329–331, 1970. ISSN 0002-9939. doi: 10.2307/2036398. URL https://doi.org/10.2307/2036398.
- William B. Gordon. An analytical criterion for the completeness of Riemannian manifolds. Proc. Amer. Math. Soc., 37:221–225, 1973. ISSN 0002-9939. doi: 10.2307/2038738. URL https://doi.org/10.2307/2038738.
- William B. Gordon. Corrections to: “An analytical criterion for the completeness of Riemannian manifolds” (Proc. Amer. Math. Soc. 37 (1973), 221–225). Proc. Amer. Math. Soc., 45:130–131, 1974. ISSN 0002-9939. doi: 10.2307/2040621. URL https://doi.org/10.2307/2040621.
- Passivation of underactuated systems with physical damping. IFAC Proceedings Volumes, 37(13):955–960, 2004. ISSN 1474-6670. doi: https://doi.org/10.1016/S1474-6670(17)31349-6. 6th IFAC Symposium on Nonlinear Control Systems 2004 (NOLCOS 2004), Stuttgart, Germany, 1-3 September, 2004.
- Philip Hartman. Ordinary differential equations, volume 38 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. ISBN 0-89871-510-5. doi: 10.1137/1.9780898719222. URL https://doi.org/10.1137/1.9780898719222. Corrected reprint of the second (1982) edition [Birkhäuser, Boston, MA; MR0658490 (83e:34002)], With a foreword by Peter Bates.
- On the design of region-avoiding metrics for collision-safe motion generation on riemannian manifolds. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2023.
- J. Milnor. Morse theory. Annals of Mathematics Studies, No. 51. Princeton University Press, Princeton, N.J., 1963. Based on lecture notes by M. Spivak and R. Wells.
- Ettore Minguzzi. Completeness of first and second order ODE flows and of Euler-Lagrange equations. J. Geom. Phys., 97:156–165, 2015. ISSN 0393-0440. doi: 10.1016/j.geomphys.2015.06.010. URL https://doi.org/10.1016/j.geomphys.2015.06.010.
- The existence of complete Riemannian metrics. Proc. Amer. Math. Soc., 12:889–891, 1961. ISSN 0002-9939. doi: 10.2307/2034383. URL https://doi.org/10.2307/2034383.
- A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Transactions on Automatic Control, 52(8):1415–1428, 2007. doi: 10.1109/TAC.2007.902736.
- Stabilization with guaranteed safety using control lyapunov–barrier function. Automatica, 66:39–47, 2016.
- Barrier lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 45(4):918–927, 2009. ISSN 0005-1098. doi: https://doi.org/10.1016/j.automatica.2008.11.017. URL https://www.sciencedirect.com/science/article/pii/S0005109808005608.
- A comparision theorem for Hamiltonian vector fields. Proc. Amer. Math. Soc., 26:629–631, 1970. ISSN 0002-9939. doi: 10.2307/2037123. URL https://doi.org/10.2307/2037123.
- Constructive safety using control barrier functions. IFAC Proceedings Volumes, 40(12):462–467, 2007.
- Physical dissipation and the method of controlled lagrangians. In 2001 European Control Conference (ECC), pages 2570–2575, 2001. doi: 10.23919/ECC.2001.7076315.