Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning and NLP in Cryptocurrency Forecasting: Integrating Financial, Blockchain, and Social Media Data (2311.14759v2)

Published 23 Nov 2023 in q-fin.ST, cs.LG, and stat.ML

Abstract: We introduce novel approaches to cryptocurrency price forecasting, leveraging Machine Learning (ML) and NLP techniques, with a focus on Bitcoin and Ethereum. By analysing news and social media content, primarily from Twitter and Reddit, we assess the impact of public sentiment on cryptocurrency markets. A distinctive feature of our methodology is the application of the BART MNLI zero-shot classification model to detect bullish and bearish trends, significantly advancing beyond traditional sentiment analysis. Additionally, we systematically compare a range of pre-trained and fine-tuned deep learning NLP models against conventional dictionary-based sentiment analysis methods. Another key contribution of our work is the adoption of local extrema alongside daily price movements as predictive targets, reducing trading frequency and portfolio volatility. Our findings demonstrate that integrating textual data into cryptocurrency price forecasting not only improves forecasting accuracy but also consistently enhances the profitability and Sharpe ratio across various validation scenarios, particularly when applying deep learning NLP techniques. The entire codebase of our experiments is made available via an online repository: https://anonymous.4open.science/r/crypto-forecasting-public

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. Forecasting stock indices: a comparison of classification and level estimation models. International Journal of Forecasting, 16:173–190, 04 2000. doi:10.1016/s0169-2070(99)00048-5.
  2. A bayesian model for multiple change point to extremes, with application to environmental and financial data. Journal of Applied Statistics, 44, 2017. doi:10.1080/02664763.2016.1254733.
  3. Prediction of the change points in stock markets using dae-lstm. Sustainability, 13:11822, 10 2021. doi:10.3390/su132111822.
  4. Improving stock trend prediction through financial time series classification and temporal correlation analysis based on aligning change point. Soft Computing, 11 2022. doi:10.1007/s00500-022-07630-7.
  5. Bing Liu. Sentiment analysis and opinion mining. Morgan & Claypool, 2012.
  6. Algorithmic trading of cryptocurrency based on twitter sentiment analysis, 2015. URL http://cs229.stanford.edu/proj2015/029_report.pdf.
  7. Cryptocurrency price prediction using tweet volumes and sentiment analysis. SMU Data Science Review, 1, 2018. URL https://scholar.smu.edu/cgi/viewcontent.cgi?article=1039&context=datasciencereview.
  8. Forecasting price of cryptocurrencies using tweets sentiment analysis. 2018 Eleventh International Conference on Contemporary Computing (IC3), 08 2018. doi:10.1109/ic3.2018.8530659.
  9. Using sentiment analysis to predict interday bitcoin price movements. The Journal of Risk Finance, 19:56–75, 01 2018. doi:10.1108/jrf-06-2017-0092.
  10. Recurrent neural network based bitcoin price prediction by twitter sentiment analysis. 2018 IEEE 3rd International Conference on Computing, Communication and Security (ICCCS), 10 2018. doi:10.1109/cccs.2018.8586824.
  11. What makes cryptocurrencies special? investor sentiment and return predictability during the bubble. SSRN Electronic Journal, 2019. doi:10.2139/ssrn.3398423.
  12. Predicting cryptocurrency price movements based on social media. 2019 International Conference on Advanced Computing and Applications (ACOMP), 11 2019. doi:10.1109/acomp.2019.00016.
  13. Predicting cryptocurrency value using sentiment analysis, 05 2019. URL https://ieeexplore.ieee.org/abstract/document/9065838.
  14. Sentiment-based prediction of alternative cryptocurrency price fluctuations using gradient boosting tree model. Frontiers in Physics, 7, 07 2019. doi:10.3389/fphy.2019.00098.
  15. Short-term bitcoin price fluctuation prediction using social media and web search data. 2019 Twelfth International Conference on Contemporary Computing (IC3), 08 2019. doi:10.1109/ic3.2019.8844899.
  16. Price movement prediction of cryptocurrencies using sentiment analysis and machine learning. Entropy, 21:589, 06 2019. doi:10.3390/e21060589.
  17. Krzysztof Wołk. Advanced social media sentiment analysis for short-term cryptocurrency price prediction. Expert Systems, 37, 11 2019. doi:10.1111/exsy.12493.
  18. Weighted moving average method for forecasting of cryptocurrency price: A data analytical study on xrp ripple cryptocurrency. International Journal of Advances in Scientific Research and Engineering, 06:127–133, 2020. doi:10.31695/ijasre.2020.33691.
  19. Forecasting of cryptocurrency prices using machine learning. Advanced Studies of Financial Technologies and Cryptocurrency Markets, pages 211–231, 2020. doi:10.1007/978-981-15-4498-9_12.
  20. Stochastic neural networks for cryptocurrency price prediction. IEEE Access, 8:82804–82818, 2020. doi:10.1109/access.2020.2990659.
  21. Time-series forecasting of bitcoin prices using high-dimensional features: a machine learning approach. Neural Computing and Applications, 07 2020. doi:10.1007/s00521-020-05129-6.
  22. Investigating the problem of cryptocurrency price prediction: A deep learning approach. Artificial Intelligence Applications and Innovations, 584:99–110, 05 2020. doi:10.1007/978-3-030-49186-4_9. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256561/.
  23. Real-time prediction of bitcoin price using machine learning techniques and public sentiment analysis. arXiv:2006.14473, 06 2020. URL https://arxiv.org/abs/2006.14473.
  24. An advanced cnn-lstm model for cryptocurrency forecasting. Electronics, 10:287, 01 2021. doi:10.3390/electronics10030287.
  25. A deep learning-based cryptocurrency price prediction model that uses on-chain data. IEEE Access, 10:56232–56248, 2022. doi:10.1109/access.2022.3177888.
  26. On technical trading and social media indicators for cryptocurrency price classification through deep learning. Expert Systems with Applications, 198:116804, 07 2022. doi:10.1016/j.eswa.2022.116804.
  27. Dl-guess: Deep learning and sentiment analysis-based cryptocurrency price prediction. IEEE Access, pages 1–1, 2022. doi:10.1109/access.2022.3163305.
  28. Cbits: Crypto bert incorporated trading system. IEEE Access, 11:6912–6921, 2023. doi:10.1109/ACCESS.2023.3236032. URL https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10014986.
  29. On forecasting cryptocurrency prices: A comparison of machine learning, deep learning, and ensembles. Forecasting, 5:196–209, 01 2023. doi:10.3390/forecast5010010.
  30. Enhancing cryptocurrency price forecasting accuracy: A feature selection and weighting approach with bi-directional lstm and trend-preserving model bias correction. IEEE Access, 11:65700–65710, 2023. doi:10.1109/ACCESS.2023.3287888. URL https://ieeexplore.ieee.org/document/10156850.
  31. Attention is all you need, 2017. URL https://arxiv.org/abs/1706.03762.
  32. Sentiment analysis towards cryptocurrency and nft in bahasa indonesia for twitter large amount data using bert. International Journal of Intelligent Systems and Applications in Engineering, 11:303–309, 02 2023. URL https://www.ijisae.org/index.php/IJISAE/article/view/2539/1122.
  33. Himanshu Dwivedi. Cryptocurrency sentiment analysis using bidirectional transformation, 03 2023. URL https://ieeexplore.ieee.org/abstract/document/10127932.
  34. Bayesian change point analysis of bitcoin returns. Finance Research Letters, 27:223–227, 12 2018. doi:10.1016/j.frl.2018.03.018.
  35. Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14:35–62, 03 1998. doi:10.1016/s0169-2070(97)00044-7.
  36. Deep learning for financial applications: A survey. Applied Soft Computing, 93:106384, 08 2020. doi:10.1016/j.asoc.2020.106384.
  37. Deep Learning. MIT Press, 11 2016.
  38. Long short-term memory. Neural Computation, 9:1–42, 01 1997. doi:10.1162/neco.1997.9.1.1. URL https://www.bioinf.jku.at/publications/older/2604.pdf.
  39. Learning to forget: Continual prediction with lstm. Neural Computation, 12:2451–2471, 10 2000. doi:10.1162/089976600300015015.
  40. Alex Graves. Supervised sequence labelling with recurrent neural networks. Springer, 2012.
  41. Deep learning for time series classification: a review. Data Mining and Knowledge Discovery, 03 2019. doi:10.1007/s10618-019-00619-1.
  42. Temporal fusion transformers for interpretable multi-horizon time series forecasting. arXiv:1912.09363 [cs, stat], 09 2020. URL https://arxiv.org/abs/1912.09363.
  43. Lstm: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28:2222–2232, 10 2017. doi:10.1109/tnnls.2016.2582924.
  44. Recent trends in deep learning based natural language processing, 2017. URL https://arxiv.org/abs/1708.02709.
  45. A survey of cross-lingual word embedding models. Journal of Artificial Intelligence Research, 65:569–631, 08 2019. doi:10.1613/jair.1.11640. URL https://arxiv.org/pdf/1706.04902.pdf.
  46. Distributed representations of words and phrases and their compositionality, 2013. URL https://arxiv.org/pdf/1310.4546.pdf.
  47. Yoav Goldberg. Neural network methods in natural language processing. Morgan & Claypool, 2017.
  48. Sentence-bert: Sentence embeddings using siamese bert-networks, 2019. URL https://arxiv.org/pdf/1908.10084.pdf.
  49. Neural machine translation by jointly learning to align and translate, 2014. URL https://arxiv.org/abs/1409.0473.
  50. Deep learning. Nature, 521:436–444, 05 2015. doi:10.1038/nature14539. URL https://www.nature.com/articles/nature14539.
  51. Universal language model fine-tuning for text classification, 2018. URL https://arxiv.org/abs/1801.06146.
  52. Roberta: A robustly optimized bert pretraining approach, 2019. URL https://arxiv.org/abs/1907.11692.
  53. Timelms: Diachronic language models from twitter, 04 2022. URL https://arxiv.org/pdf/2202.03829.pdf.
  54. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv:1910.13461 [cs, stat], 10 2019. URL https://arxiv.org/abs/1910.13461.
  55. Optuna: A next-generation hyperparameter optimization framework. arXiv:1907.10902 [cs, stat], 07 2019. URL https://arxiv.org/abs/1907.10902.
  56. Mstl: A seasonal-trend decomposition algorithm for time series with multiple seasonal patterns. arXiv:2107.13462 [stat], 07 2021. URL https://arxiv.org/abs/2107.13462.
  57. Forecasting at scale. The American Statistician, 72:37–45, 09 2017. doi:10.1080/00031305.2017.1380080. URL http://lethalletham.com/ForecastingAtScale.pdf.
  58. Scaling blockchains: A comprehensive survey. IEEE Access, 8:125244–125262, 2020. doi:10.1109/access.2020.3007251.
  59. Andrei Shleifer. Inefficient Markets: An Introduction to Behavioral Finance. Oxford Univ. Press, 2009.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Vincent Gurgul (2 papers)
  2. Stefan Lessmann (34 papers)
  3. Wolfgang Karl Härdle (49 papers)
Citations (5)
X Twitter Logo Streamline Icon: https://streamlinehq.com