Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Filter bubbles and affective polarization in user-personalized large language model outputs (2311.14677v1)

Published 31 Oct 2023 in cs.CY, cs.CL, and cs.LG

Abstract: Echoing the history of search engines and social media content rankings, the advent of LLMs has led to a push for increased personalization of model outputs to individual users. In the past, personalized recommendations and ranking systems have been linked to the development of filter bubbles (serving content that may confirm a user's existing biases) and affective polarization (strong negative sentiment towards those with differing views). In this work, we explore how prompting a leading LLM, ChatGPT-3.5, with a user's political affiliation prior to asking factual questions about public figures and organizations leads to differing results. We observe that left-leaning users tend to receive more positive statements about left-leaning political figures and media outlets, while right-leaning users see more positive statements about right-leaning entities. This pattern holds across presidential candidates, members of the U.S. Senate, and media organizations with ratings from AllSides. When qualitatively evaluating some of these outputs, there is evidence that particular facts are included or excluded based on the user's political affiliation. These results illustrate that personalizing LLMs based on user demographics carry the same risks of affective polarization and filter bubbles that have been seen in other personalized internet technologies. This ``failure mode" should be monitored closely as there are more attempts to monetize and personalize these models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Tomo Lazovich (9 papers)