Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-Informed Tensor Basis Neural Network for Turbulence Closure Modeling (2311.14576v1)

Published 24 Nov 2023 in physics.flu-dyn and physics.comp-ph

Abstract: Despite the increasing availability of high-performance computational resources, Reynolds-Averaged Navier-Stokes (RANS) simulations remain the workhorse for the analysis of turbulent flows in real-world applications. Linear eddy viscosity models (LEVM), the most commonly employed model type, cannot accurately predict complex states of turbulence. This work combines a deep-neural-network-based, nonlinear eddy viscosity model with turbulence realizability constraints as an inductive bias in order to yield improved predictions of the anisotropy tensor. Using visualizations based on the barycentric map, we show that the proposed machine learning method's anisotropy tensor predictions offer a significant improvement over all LEVMs in traditionally challenging cases with surface curvature and flow separation. However, this improved anisotropy tensor does not, in general, yield improved mean-velocity and pressure field predictions in comparison with the best-performing LEVM.

Summary

We haven't generated a summary for this paper yet.