Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Induced gravitational waves: the effect of first order tensor perturbations (2311.14513v3)

Published 24 Nov 2023 in astro-ph.CO and gr-qc

Abstract: Scalar induced gravitational waves contribute to the cosmological gravitational wave background. They can be related to the primordial density power spectrum produced towards the end of inflation and therefore are a convenient new tool to constrain models of inflation. These waves are sourced by terms quadratic in perturbations and hence appear at second order in cosmological perturbation theory. While the focus of research so far was on purely scalar source terms we also study the effect of including first order tensor perturbations as an additional source. This gives rise to two additional source terms: a term quadratic in the tensor perturbations and a cross term involving mixed scalar and tensor perturbations. We present full analytical expressions for the spectral density of these new source terms and discuss their general behaviour. To illustrate the generation mechanism we study two toy models containing a peak on small scales. For these models we show that the scalar-tensor contribution becomes non-negligible compared to the scalar-scalar contribution on smaller scales. We also consider implications for future gravitational wave surveys.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. A. R. Liddle and D. H. Lyth, “Cosmological inflation and large scale structure,” doi:10.1017/CBO9781139175180
  2. K. Tomita, “Non-Linear Theory of Gravitational Instability in the Expanding Universe”, Progress of Theoretical Physics 37 (1967) 831 [https://academic.oup.com/ptp/article-pdf/37/5/831/5234391/37-5-831.pdf]
  3. S. Matarrese, O. Pantano and D. Saez, “A General relativistic approach to the nonlinear evolution of collisionless matter,” Phys. Rev. D 47 (1993), 1311-1323 doi:10.1103/PhysRevD.47.1311
  4. S. Matarrese, O. Pantano and D. Saez, “General relativistic dynamics of irrotational dust: Cosmological implications,” Phys. Rev. Lett. 72 (1994), 320-323 doi:10.1103/PhysRevLett.72.320 [arXiv:astro-ph/9310036 [astro-ph]].
  5. S. Matarrese, S. Mollerach and M. Bruni, “Second order perturbations of the Einstein-de Sitter universe,” Phys. Rev. D 58 (1998), 043504 doi:10.1103/PhysRevD.58.043504 [arXiv:astro-ph/9707278 [astro-ph]].
  6. K. N. Ananda, C. Clarkson and D. Wands, “The Cosmological gravitational wave background from primordial density perturbations,” Phys. Rev. D 75 (2007), 123518 doi:10.1103/PhysRevD.75.123518 [arXiv:gr-qc/0612013 [gr-qc]].
  7. D. Baumann, P. J. Steinhardt, K. Takahashi and K. Ichiki, “Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations,” Phys. Rev. D 76 (2007), 084019 doi:10.1103/PhysRevD.76.084019 [arXiv:hep-th/0703290 [hep-th]].
  8. G. Domènech, “Scalar Induced Gravitational Waves Review,” Universe 7 (2021) no.11, 398 doi:10.3390/universe7110398 [arXiv:2109.01398 [gr-qc]].
  9. G. Domènech, C. Lin and M. Sasaki, “Gravitational wave constraints on the primordial black hole dominated early universe,” JCAP 04 (2021), 062 [erratum: JCAP 11 (2021), E01] doi:10.1088/1475-7516/2021/11/E01 [arXiv:2012.08151 [gr-qc]].
  10. Z. Chang, X. Zhang and J. Z. Zhou, “Gravitational waves from primordial scalar and tensor perturbations,” [arXiv:2209.07693 [astro-ph.CO]].
  11. W. H. Kinney, “A Hamilton-Jacobi approach to nonslow roll inflation,” Phys. Rev. D 56 (1997), 2002-2009 doi:10.1103/PhysRevD.56.2002 [arXiv:hep-ph/9702427 [hep-ph]].
  12. J. Garcia-Bellido and E. Ruiz Morales, “Primordial black holes from single field models of inflation,” Phys. Dark Univ. 18 (2017), 47-54 doi:10.1016/j.dark.2017.09.007 [arXiv:1702.03901 [astro-ph.CO]].
  13. L. Iacconi, H. Assadullahi, M. Fasiello and D. Wands, “Revisiting small-scale fluctuations in α𝛼\alphaitalic_α-attractor models of inflation,” JCAP 06 (2022) no.06, 007 doi:10.1088/1475-7516/2022/06/007 [arXiv:2112.05092 [astro-ph.CO]].
  14. H. Motohashi and W. Hu, “Primordial Black Holes and Slow-Roll Violation,” Phys. Rev. D 96 (2017) no.6, 063503 doi:10.1103/PhysRevD.96.063503 [arXiv:1706.06784 [astro-ph.CO]].
  15. J. Fumagalli, S. Renaux-Petel, J. W. Ronayne and L. T. Witkowski, “Turning in the landscape: A new mechanism for generating primordial black holes,” Phys. Lett. B 841 (2023), 137921 doi:10.1016/j.physletb.2023.137921 [arXiv:2004.08369 [hep-th]].
  16. G. A. Palma, S. Sypsas and C. Zenteno, “Seeding primordial black holes in multifield inflation,” Phys. Rev. Lett. 125 (2020) no.12, 121301 doi:10.1103/PhysRevLett.125.121301 [arXiv:2004.06106 [astro-ph.CO]].
  17. M. Braglia, D. K. Hazra, F. Finelli, G. F. Smoot, L. Sriramkumar and A. A. Starobinsky, “Generating PBHs and small-scale GWs in two-field models of inflation,” JCAP 08 (2020), 001 doi:10.1088/1475-7516/2020/08/001 [arXiv:2005.02895 [astro-ph.CO]].
  18. N. Barnaby, E. Pajer and M. Peloso, “Gauge Field Production in Axion Inflation: Consequences for Monodromy, non-Gaussianity in the CMB, and Gravitational Waves at Interferometers,” Phys. Rev. D 85 (2012), 023525 doi:10.1103/PhysRevD.85.023525 [arXiv:1110.3327 [astro-ph.CO]].
  19. B. Thorne, T. Fujita, M. Hazumi, N. Katayama, E. Komatsu and M. Shiraishi, “Finding the chiral gravitational wave background of an axion-SU(2) inflationary model using CMB observations and laser interferometers,” Phys. Rev. D 97 (2018) no.4, 043506 doi:10.1103/PhysRevD.97.043506 [arXiv:1707.03240 [astro-ph.CO]].
  20. E. Dimastrogiovanni, M. Fasiello and T. Fujita, “Primordial Gravitational Waves from Axion-Gauge Fields Dynamics,” JCAP 01 (2017), 019 doi:10.1088/1475-7516/2017/01/019 [arXiv:1608.04216 [astro-ph.CO]].
  21. C. Yuan, Z. C. Chen and Q. G. Huang, “Log-dependent slope of scalar induced gravitational waves in the infrared regions,” Phys. Rev. D 101 (2020) no.4, 043019 doi:10.1103/PhysRevD.101.043019 [arXiv:1910.09099 [astro-ph.CO]].
  22. C. J. Moore, R. H. Cole and C. P. L. Berry, “Gravitational-wave sensitivity curves,” Class. Quant. Grav. 32 (2015) no.1, 015014 doi:10.1088/0264-9381/32/1/015014 [arXiv:1408.0740 [gr-qc]].
  23. P. Bari, N. Bartolo, G. Domènech and S. Matarrese, “Gravitational waves induced by scalar-tensor mixing,” [arXiv:2307.05404 [astro-ph.CO]].
  24. Y. H. Yu and S. Wang, “Primordial Gravitational Waves Assisted by Cosmological Scalar Perturbations,” [arXiv:2303.03897 [astro-ph.CO]].
  25. P. Peter and J. P. Uzan, “Primordial Cosmology,” Oxford University Press, 2013, ISBN 978-0-19-966515-0, 978-0-19-920991-0
  26. J. R. Espinosa, D. Racco and A. Riotto, “A Cosmological Signature of the SM Higgs Instability: Gravitational Waves,” JCAP 09 (2018), 012 doi:10.1088/1475-7516/2018/09/012 [arXiv:1804.07732 [hep-ph]].
  27. K. Kohri and T. Terada, “Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations,” Phys. Rev. D 97 (2018) no.12, 123532 doi:10.1103/PhysRevD.97.123532 [arXiv:1804.08577 [gr-qc]].
  28. K. A. Malik and D. Wands, “Cosmological perturbations,” Phys. Rept. 475 (2009), 1-51 doi:10.1016/j.physrep.2009.03.001 [arXiv:0809.4944 [astro-ph]].
  29. K. A. Malik, “A not so short note on the Klein-Gordon equation at second order,” JCAP 03 (2007), 004 doi:10.1088/1475-7516/2007/03/004 [arXiv:astro-ph/0610864 [astro-ph]].
  30. S. Pi and M. Sasaki, “Gravitational Waves Induced by Scalar Perturbations with a Lognormal Peak,” JCAP 09 (2020), 037 doi:10.1088/1475-7516/2020/09/037 [arXiv:2005.12306 [gr-qc]].
  31. B. S. Sathyaprakash and B. F. Schutz, “Physics, Astrophysics and Cosmology with Gravitational Waves,” Living Rev. Rel. 12 (2009), 2 doi:10.12942/lrr-2009-2 [arXiv:0903.0338 [gr-qc]].
  32. C. Pitrou, X. Roy and O. Umeh, “xPand: An algorithm for perturbing homogeneous cosmologies,” Class. Quant. Grav. 30 (2013), 165002 doi:10.1088/0264-9381/30/16/165002 [arXiv:1302.6174 [astro-ph.CO]].
  33. C. Caprini and D. G. Figueroa, “Cosmological Backgrounds of Gravitational Waves,” Class. Quant. Grav. 35 (2018) no.16, 163001 doi:10.1088/1361-6382/aac608 [arXiv:1801.04268 [astro-ph.CO]]..
  34. D. J. Mulryne and J. W. Ronayne, “PyTransport: A Python package for the calculation of inflationary correlation functions,” J. Open Source Softw. 3 (2018) no.23, 494 doi:10.21105/joss.00494 [arXiv:1609.00381 [astro-ph.CO]].
Citations (7)

Summary

We haven't generated a summary for this paper yet.