Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Segment (Almost) Nothing: Prompt-Agnostic Adversarial Attacks on Segmentation Models (2311.14450v1)

Published 24 Nov 2023 in cs.CV, cs.CR, and cs.LG

Abstract: General purpose segmentation models are able to generate (semantic) segmentation masks from a variety of prompts, including visual (points, boxed, etc.) and textual (object names) ones. In particular, input images are pre-processed by an image encoder to obtain embedding vectors which are later used for mask predictions. Existing adversarial attacks target the end-to-end tasks, i.e. aim at altering the segmentation mask predicted for a specific image-prompt pair. However, this requires running an individual attack for each new prompt for the same image. We propose instead to generate prompt-agnostic adversarial attacks by maximizing the $\ell_2$-distance, in the latent space, between the embedding of the original and perturbed images. Since the encoding process only depends on the image, distorted image representations will cause perturbations in the segmentation masks for a variety of prompts. We show that even imperceptible $\ell_\infty$-bounded perturbations of radius $\epsilon=1/255$ are often sufficient to drastically modify the masks predicted with point, box and text prompts by recently proposed foundation models for segmentation. Moreover, we explore the possibility of creating universal, i.e. non image-specific, attacks which can be readily applied to any input without further computational cost.

Citations (2)

Summary

We haven't generated a summary for this paper yet.