Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Theory of fractional Chern insulator states in pentalayer graphene moiré superlattice (2311.14368v2)

Published 24 Nov 2023 in cond-mat.str-el and cond-mat.mes-hall

Abstract: The experimental discoveries of fractional quantum anomalous Hall effects under zero magnetic fields in both transition metal dichalcogenide and pentalayer graphene moir\'e superlattices have aroused significant research interest. In this work, we theoretically study the fractional quantum anomalous Hall states (also known as fractional Chern insulator states) in pentalayer graphene moir\'e superlattice. Starting from the highest energy scale ($\sim!2\,$eV) of the continuum model, we first construct a renormalized low-energy model that applies to a lower cutoff $\sim!0.15\,$eV using renormalization group approach. Then, we study the ground states of the renormalized low-energy model at filling 1 under Hartree-Fock approximation in the presence of tunable but self-consistently screened displacement field $D$ with several experimentally relevant background dielectric constant $\epsilon_r$. Two competing Hartree-Fock states are obtained at filling 1, which give rise to two types of topologically distinct isolated flat bands with Chern number 1 and 0, respectively. We continue to explore the interacting ground states of the two types of isolated flat bands at hole dopings of 1/3, 2/5, 3/5, and 2/3 (corresponding electron fillings of 2/3, 3/5, 2/5, and 1/3 with respect to charge neutrality). Setting $\epsilon_r=5$, our exact-diagonalization calculations suggest that the system stays in fractional Chern insulator (FCI) state at 2/3 electron filling when $0.9\,\textrm{V/nm}\leq!D!\leq 0.92\,\textrm{V/nm}$; while no robust FCI state is obtained at 1/3 electron filling. We have also obtained composite-fermion type FCI ground states at 3/5 electron filling within $0.9\,\textrm{V/nm}\leq! D !\leq!0.95\,\textrm{V/nm}$ and $\epsilon_r=5$. These numerical results are quantitatively consistent with experimental observations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. N. Regnault and B. A. Bernevig, Phys. Rev. X 1, 021014 (2011a).
  2. E. Tang, J.-W. Mei, and X.-G. Wen, Phys. Rev. Lett. 106, 236802 (2011).
  3. G. Möller and N. R. Cooper, Phys. Rev. Lett. 103, 105303 (2009).
  4. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
  5. R. B. Laughlin, Physical Review Letters 50, 1395 (1983).
  6. J. K. Jain, Physical review letters 63, 199 (1989).
  7. G. Moore and N. Read, Nuclear Physics B 360, 362 (1991).
  8. H. L. Stormer, D. C. Tsui, and A. C. Gossard, Reviews of Modern Physics 71, S298 (1999).
  9. Y.-L. Wu, B. A. Bernevig, and N. Regnault, Phys. Rev. B 85, 075116 (2012).
  10. X. Hu, M. Kargarian, and G. A. Fiete, Phys. Rev. B 84, 155116 (2011).
  11. R. Roy, Phys. Rev. B 90, 165139 (2014).
  12. P. J. Ledwith, A. Vishwanath, and D. E. Parker, Vortexability: A unifying criterion for ideal fractional chern insulators (2022a), arXiv:2209.15023 [cond-mat.str-el] .
  13. R. Bistritzer and A. H. MacDonald, Proceedings of the National Academy of Sciences 108, 12233 (2011).
  14. G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath, Phys. Rev. Lett. 122, 106405 (2019).
  15. J. Liu, J. Liu, and X. Dai, Phys. Rev. B 99, 155415 (2019a).
  16. J. Ahn, S. Park, and B.-J. Yang, Phys. Rev. X 9, 021013 (2019).
  17. N. Bultinck, S. Chatterjee, and M. P. Zaletel, Phys. Rev. Lett. 124, 166601 (2020).
  18. Z.-D. Song and B. A. Bernevig, Phys. Rev. Lett. 129, 047601 (2022).
  19. H. Shi and X. Dai, Phys. Rev. B 106, 245129 (2022).
  20. Y.-H. Zhang, D. Mao, and T. Senthil, Phys. Rev. Research 1, 033126 (2019).
  21. M. Koshino, Phys. Rev. B 99, 235406 (2019).
  22. P. J. Ledwith, A. Vishwanath, and E. Khalaf, Phys. Rev. Lett. 128, 176404 (2022b).
  23. J. Wang and Z. Liu, Phys. Rev. Lett. 128, 176403 (2022).
  24. N. Morales-Durán, N. Wei, and A. H. MacDonald, Magic angles and fractional chern insulators in twisted homobilayer tmds (2023), arXiv:2308.03143 [cond-mat.str-el] .
  25. V. Crépel, N. Regnault, and R. Queiroz, The chiral limits of moiré semiconductors: origin of flat bands and topology in twisted transition metal dichalcogenides homobilayers (2023), arXiv:2305.10477 [cond-mat.mes-hall] .
  26. F.-R. Fan, C. Xiao, and W. Yao, Altermagnetic orbital chern insulator in twisted mote22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT (2023), arXiv:2308.11454 [cond-mat.str-el] .
  27. P. Moon and M. Koshino, Physical Review B 87, 205404 (2013).
  28. P. Moon and M. Koshino, Phys. Rev. B 90, 155406 (2014a).
  29. J. Gonzalez, F. Guinea, and V. M. A. H., Nuclear Physics B 424, 595 (1994).
  30. O. Vafek and J. Kang, Phys. Rev. Lett. 125, 257602 (2020a).
  31. Z. Dong, A. S. Patri, and T. Senthil, Theory of fractional quantum anomalous hall phases in pentalayer rhombohedral graphene moiré structures (2023a), arXiv:2311.03445 [cond-mat.str-el] .
  32. B. Zhou, H. Yang, and Y.-H. Zhang, Fractional quantum anomalous hall effects in rhombohedral multilayer graphene in the moiréless limit and in coulomb imprinted superlattice (2023), arXiv:2311.04217 [cond-mat.str-el] .
  33. P. Moon and M. Koshino, Phys. Rev. B 90, 155406 (2014b).
  34. E. McCann, Phys. Rev. B 74, 161403 (2006).
  35. A. A. Avetisyan, B. Partoens, and F. M. Peeters, Phys. Rev. B 79, 035421 (2009a).
  36. A. A. Avetisyan, B. Partoens, and F. M. Peeters, Phys. Rev. B 80, 195401 (2009b).
  37. M. Koshino and E. McCann, Phys. Rev. B 79, 125443 (2009).
  38. O. Vafek and J. Kang, Phys. Rev. Lett. 125, 257602 (2020b).
  39. S. Zhang, X. Dai, and J. Liu, Phys. Rev. Lett. 128, 026403 (2022).
  40. N. Regnault and B. A. Bernevig, Phys. Rev. X 1, 021014 (2011b).
  41. N. N. T. Nam and M. Koshino, Phys. Rev. B 96, 075311 (2017).
  42. P. Moon and M. Koshino, Phys. Rev. B 90, 155406 (2014c).
  43. M. Koshino and N. N. T. Nam, Phys. Rev. B 101, 195425 (2020).
  44. B. Xie and J. Liu, Phys. Rev. B 108, 094115 (2023).
Citations (14)

Summary

We haven't generated a summary for this paper yet.