Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High order unfitted finite element discretizations for explicit boundary representations (2311.14363v2)

Published 24 Nov 2023 in cs.CE, cs.NA, and math.NA

Abstract: When modeling scientific and industrial problems, geometries are typically modeled by explicit boundary representations obtained from computer-aided design software. Unfitted (also known as embedded or immersed) finite element methods offer a significant advantage in dealing with complex geometries, eliminating the need for generating unstructured body-fitted meshes. However, current unfitted finite elements on nonlinear geometries are restricted to implicit (possibly high-order) level set geometries. In this work, we introduce a novel automatic computational pipeline to approximate solutions of partial differential equations on domains defined by explicit nonlinear boundary representations. For the geometrical discretization, we propose a novel algorithm to generate quadratures for the bulk and surface integration on nonlinear polytopes required to compute all the terms in unfitted finite element methods. The algorithm relies on a nonlinear triangulation of the boundary, a kd-tree refinement of the surface cells that simplify the nonlinear intersections of surface and background cells to simple cases that are diffeomorphically equivalent to linear intersections, robust polynomial root-finding algorithms and surface parameterization techniques. We prove the correctness of the proposed algorithm. We have successfully applied this algorithm to simulate partial differential equations with unfitted finite elements on nonlinear domains described by computer-aided design models, demonstrating the robustness of the geometric algorithm and showing high-order accuracy of the overall method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194(39-41):4135–4195, oct 2005. doi:10.1016/j.cma.2004.10.008.
  2. V. Karypis, George; Kumar. Metis: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. Technical report, University of Minnesota, Department of Computer Science and Engineering, 1997. Available at https://hdl.handle.net/11299/215346.
  3. The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering, 197(45–48):3768–3782, Aug. 2008. doi:10.1016/j.cma.2008.02.036.
  4. Geometrical discretisations for unfitted finite elements on explicit boundary representations. Journal of Computational Physics, 460:111162, jul 2022. doi:10.1016/j.jcp.2022.111162.
  5. T.-P. Fries and S. Omerović. Higher-order accurate integration of implicit geometries. International Journal for Numerical Methods in Engineering, 106(5):323–371, oct 2015. doi:10.1002/nme.5121.
  6. G. Legrain and N. Moës. Adaptive anisotropic integration scheme for high-order fictitious domain methods: Application to thin structures. International Journal for Numerical Methods in Engineering, 114(8):882–904, feb 2018. doi:10.1002/nme.5769.
  7. T. Fries and D. Schöllhammer. Higher-order meshing of implicit geometries, part II: Approximations on manifolds. Computer Methods in Applied Mechanics and Engineering, 326:270–297, nov 2017. doi:10.1016/j.cma.2017.07.037.
  8. T. Fries. Higher-order conformal decomposition FEM (CDFEM). Computer Methods in Applied Mechanics and Engineering, 328:75–98, jan 2018. doi:10.1016/j.cma.2017.08.046.
  9. Higher-order accurate meshing of nonsmooth implicitly defined surfaces and intersection curves. Computational Mathematics and Mathematical Physics, 59(12):2093–2107, dec 2019a. doi:10.1134/s0965542519120169.
  10. J. Stanford and T. Fries. A higher-order conformal decomposition finite element method for plane b-rep geometries. Computers & Structures, 214:15–27, apr 2019b. doi:10.1016/j.compstruc.2018.12.006.
  11. C. Lehrenfeld. High order unfitted finite element methods on level set domains using isoparametric mappings. Computer Methods in Applied Mechanics and Engineering, 300:716–733, Mar. 2016. doi:10.1016/j.cma.2015.12.005.
  12. R. I. Saye. High-order quadrature methods for implicitly defined surfaces and volumes in hyperrectangles. SIAM Journal on Scientific Computing, 37(2):A993–A1019, Jan. 2015. doi:10.1137/140966290.
  13. Stability and conditioning of immersed finite element methods: Analysis and remedies. Archives of Computational Methods in Engineering, 30(6):3617–3656, May 2023. doi:10.1007/s11831-023-09913-0.
  14. E. Burman. Ghost penalty. Comptes Rendus Mathematique, 348(21-22):1217–1220, nov 2010. doi:10.1016/j.crma.2010.10.006.
  15. CutFEM: Discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering, 104(7):472–501, dec 2014. doi:10.1002/nme.4823.
  16. An unfitted discontinuous galerkin method for pore-scale simulations of solute transport. Mathematics and Computers in Simulation, 81(10):2051–2061, June 2011. doi:10.1016/j.matcom.2010.12.024.
  17. A. Johansson and M. G. Larson. A high order discontinuous galerkin nitsche method for elliptic problems with fictitious boundary. Numerische Mathematik, 123(4):607–628, Sept. 2012. doi:10.1007/s00211-012-0497-1.
  18. The aggregated unfitted finite element method for elliptic problems. Computer Methods in Applied Mechanics and Engineering, 336:533–553, jul 2018a. doi:10.1016/j.cma.2018.03.022.
  19. Mixed aggregated finite element methods for the unfitted discretization of the stokes problem. SIAM Journal on Scientific Computing, 40(6):B1541–B1576, jan 2018b. doi:10.1137/18m1185624.
  20. Distributed-memory parallelization of the aggregated unfitted finite element method. Computer Methods in Applied Mechanics and Engineering, 357:112583, dec 2019. doi:10.1016/j.cma.2019.112583.
  21. The aggregated unfitted finite element method on parallel tree-based adaptive meshes. SIAM Journal on Scientific Computing, 43(3):C203–C234, jan 2021. doi:10.1137/20m1344512.
  22. E. Neiva and S. Badia. Robust and scalable h-adaptive aggregated unfitted finite elements for interface elliptic problems. Computer Methods in Applied Mechanics and Engineering, 380:113769, jul 2021. doi:10.1016/j.cma.2021.113769.
  23. Robust high-order unfitted finite elements by interpolation-based discrete extension. Computers & Mathematics with Applications, 127:105–126, dec 2022a. doi:10.1016/j.camwa.2022.09.027.
  24. Linking ghost penalty and aggregated unfitted methods. Computer Methods in Applied Mechanics and Engineering, 388:114232, jan 2022b. doi:10.1016/j.cma.2021.114232.
  25. L. Engvall and J. A. Evans. Isogeometric triangular bernstein–bézier discretizations: Automatic mesh generation and geometrically exact finite element analysis. Computer Methods in Applied Mechanics and Engineering, 304:378–407, jun 2016. doi:10.1016/j.cma.2016.02.012.
  26. L. Engvall and J. A. Evans. Isogeometric unstructured tetrahedral and mixed-element bernstein–bézier discretizations. Computer Methods in Applied Mechanics and Engineering, 319:83–123, jun 2017. doi:10.1016/j.cma.2017.02.017.
  27. S. Xia and X. Qian. Isogeometric analysis with bézier tetrahedra. Computer Methods in Applied Mechanics and Engineering, 316:782–816, apr 2017. doi:10.1016/j.cma.2016.09.045.
  28. S. Xia and X. Qian. Generating high-quality high-order parameterization for isogeometric analysis on triangulations. Computer Methods in Applied Mechanics and Engineering, 338:1–26, aug 2018. doi:10.1016/j.cma.2018.04.011.
  29. Bézier projection: A unified approach for local projection and quadrature-free refinement and coarsening of NURBS and t-splines with particular application to isogeometric design and analysis. Computer Methods in Applied Mechanics and Engineering, 284:55–105, feb 2015. doi:10.1016/j.cma.2014.07.014.
  30. Immersed boundary-conformal isogeometric method for linear elliptic problems. Computational Mechanics, 68(6):1385–1405, aug 2021. doi:10.1007/s00466-021-02074-6.
  31. Robust numerical integration on curved polyhedra based on folded decompositions. Computer Methods in Applied Mechanics and Engineering, 395:114948, may 2022. doi:10.1016/j.cma.2022.114948.
  32. P. Antolin and T. Hirschler. Quadrature-free immersed isogeometric analysis. Engineering with Computers, 38(5):4475–4499, apr 2022. doi:10.1007/s00366-022-01644-3.
  33. E. B. Chin and N. Sukumar. An efficient method to integrate polynomials over polytopes and curved solids. Computer Aided Geometric Design, 82:101914, oct 2020. doi:10.1016/j.cagd.2020.101914.
  34. High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes. Computer-Aided Design, 141:103093, dec 2021. doi:10.1016/j.cad.2021.103093.
  35. Surface–surface-intersection computation using a bounding volume hierarchy with osculating toroidal patches in the leaf nodes. Computer-Aided Design, 127:102866, oct 2020. doi:10.1016/j.cad.2020.102866.
  36. N. M. Patrikalakis and T. Maekawa. Shape interrogation for computer aided design and manufacturing. Springer Berlin Heidelberg, 2010. doi:10.1007/978-3-642-04074-0.
  37. A line/trimmed NURBS surface intersection algorithm using matrix representations. Computer Aided Geometric Design, 48:1–16, nov 2016. doi:10.1016/j.cagd.2016.07.002.
  38. X. Li and F. Chen. Exact and approximate representations of trimmed surfaces with NURBS and bézier surfaces. In 2009 11th IEEE International Conference on Computer-Aided Design and Computer Graphics. IEEE, aug 2009. doi:10.1109/cadcg.2009.5246888.
  39. B. Marussig and T. J. R. Hughes. A review of trimming in isogeometric analysis: Challenges, data exchange and simulation aspects. Archives of Computational Methods in Engineering, 25(4):1059–1127, jun 2017. doi:10.1007/s11831-017-9220-9.
  40. Simulation with trimmed models. In The Isogeometric Boundary Element Method, pages 185–216. Springer International Publishing, sep 2019. doi:10.1007/978-3-030-23339-6_10.
  41. Untrimming: Precise conversion of trimmed-surfaces to tensor-product surfaces. Computers & Graphics, 70:80–91, feb 2018. doi:10.1016/j.cag.2017.08.009.
  42. Volumetric untrimming: Precise decomposition of trimmed trivariates into tensor products. Computer Aided Geometric Design, 71:1–15, may 2019. doi:10.1016/j.cagd.2019.04.005.
  43. Isogeometric analysis on v-reps: First results. Computer Methods in Applied Mechanics and Engineering, 355:976–1002, oct 2019. doi:10.1016/j.cma.2019.07.015.
  44. F. Scholz and B. Jüttler. Numerical integration on trimmed three-dimensional domains with implicitly defined trimming surfaces. Computer Methods in Applied Mechanics and Engineering, 357:112577, dec 2019. doi:10.1016/j.cma.2019.112577.
  45. Isogeometric finite element data structures based on bézier extraction of NURBS. International Journal for Numerical Methods in Engineering, 87(1-5):15–47, aug 2010. doi:10.1002/nme.2968.
  46. Bernstein’s basis and real root isolation. Research Report RR-5149, INRIA, 2004.
  47. Solving nonlinear polynomial systems in the barycentric bernstein basis. The Visual Computer, 24(3):187–200, nov 2007. doi:10.1007/s00371-007-0184-x.
  48. B. Mourrain and J. Pavone. Subdivision methods for solving polynomial equations. Journal of Symbolic Computation, 44(3):292–306, mar 2009. doi:10.1016/j.jsc.2008.04.016.
  49. C. F. Borges and T. Pastva. Total least squares fitting of bézier and b-spline curves to ordered data. Computer Aided Geometric Design, 19(4):275–289, apr 2002. doi:10.1016/s0167-8396(02)00088-2.
  50. Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering, 50(4):993–1013, 2001. doi:10.1002/1097-0207(20010210)50:4<993::aid-nme164>3.0.co;2-m.
  51. Lagrange extraction and projection for NURBS basis functions: A direct link between isogeometric and standard nodal finite element formulations. International Journal for Numerical Methods in Engineering, 108(6):515–534, feb 2016. doi:10.1002/nme.5216.
  52. A high-order discontinuous galerkin method for compressible flows with immersed boundaries. International Journal for Numerical Methods in Engineering, 110(1):3–30, nov 2016. doi:10.1002/nme.5343.
  53. C. Geuzaine and J.-F. Remacle. Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331, may 2009. doi:10.1002/nme.2579.
  54. D. N. Arnold. Finite Element Exterior Calculus. Society for Industrial and Applied Mathematics, Dec. 2018. doi:10.1137/1.9781611975543.
  55. I. Wald and V. Havran. On building fast kd-trees for ray tracing, and on doing that in o (n log n). In 2006 IEEE Symposium on Interactive Ray Tracing, pages 61–69. IEEE, 2006.
  56. C. Ericson. Real-time collision detection. Crc Press, 2004.
  57. G. M. Ziegler. Lectures on Polytopes. Springer New York, 1995. doi:10.1007/978-1-4613-8431-1.
  58. A geometric approach for computing the kernel of a polyhedron. Smart Tools and Apps for Graphics - Eurographics Italian Chapter Conference, 2021. doi:10.2312/STAG.20211470.
  59. Isogeometric analysis of trimmed NURBS geometries. Computer Methods in Applied Mechanics and Engineering, 241-244:93–111, oct 2012. doi:10.1016/j.cma.2012.05.021.
  60. Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Transactions on Visualization and Computer Graphics, 4(1):21–36, 1998. doi:10.1109/2945.675649.
  61. Interrogation of spline surfaces with application to isogeometric design and analysis of lattice-skin structures. Computer Methods in Applied Mechanics and Engineering, 351:928–950, jul 2019. doi:10.1016/j.cma.2019.03.046.
  62. Julia: A fresh approach to numerical computing. SIAM Review, 59(1):65–98, jan 2017. doi:10.1137/141000671.
  63. S. Badia and F. Verdugo. Gridap: An extensible finite element toolbox in julia. Journal of Open Source Software, 5(52):2520, aug 2020. doi:10.21105/joss.02520.
  64. F. Verdugo and S. Badia. The software design of gridap: A finite element package based on the julia JIT compiler. Computer Physics Communications, 276:108341, jul 2022. doi:10.1016/j.cpc.2022.108341.
  65. GridapEmbedded. Version 0.8., Jan. 2023. Available at https://github.com/gridap/GridapEmbedded.jl.
  66. STLCutters, Sept. 2021. doi:10.5281/zenodo.5444427.
  67. J. Heiskala. DirectQhull. Version 0.2.0., Dec. 2022. Available at https://github.com/JuhaHeiskala/DirectQhull.jl.
  68. The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4):469–483, dec 1996. doi:10.1145/235815.235821.
  69. F. Verdugo. GridapGmsh. Version 0.6.1., July 2022. Available at https://github.com/gridap/GridapGmsh.jl.
  70. Open cascade technology, 2022. Available at https://dev.opencascade.org/, Accessed: Jan, 2023.
  71. Grabcad, 2023. Available at https://grabcad.com/library/connecting-rod-416, Accessed: May, 2023.
  72. A. Bower. Continuum mechanics, elasticity. Brown Universit, School of Engineering, 2012. Available at https://www.brown.edu/Departments/Engineering/Courses/En221/Notes/Elasticity/Elasticity.htm, Accessed: May, 2023.
  73. Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra. Computational Mechanics, 56(6):967–981, Oct. 2015. doi:10.1007/s00466-015-1213-7.
  74. GridapDistributed: a massively parallel finite element toolbox in julia. Journal of Open Source Software, 7(74):4157, jun 2022. doi:10.21105/joss.04157.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com