Emergence of long-range angular correlations in low-multiplicity proton-proton collisions (2311.14357v2)
Abstract: This Letter presents the measurement of near-side associated per-trigger yields, denoted ridge yields, from the analysis of angular correlations of charged hadrons in proton-proton collisions at $\sqrt{s}$ = 13 TeV. Long-range ridge yields are extracted for pairs of charged particles with a pseudorapidity difference of $1.4 < |\Delta\eta| < 1.8$ and a transverse momentum of $1 < p_{\rm T} < 2$ GeV/$c$, as a function of the charged-particle multiplicity measured at midrapidity. This study extends the measurements of the ridge yield to the low multiplicity region, where in hadronic collisions it is typically conjectured that a strongly-interacting medium is unlikely to be formed. The precision of the new low multiplicity results allows for the first direct quantitative comparison with the results obtained in $\mathrm {e{+}e{-}}$ collisions at $\sqrt{s}$ = 91 GeV and $\sqrt{s}$ = 183$-$209 GeV, where initial-state effects such as pre-equilibrium dynamics and collision geometry are not expected to play a role. In the multiplicity range $8\lesssim\langle N_\mathrm{ch}\rangle\lesssim 24$ where the $\mathrm {e{+}e{-}}$ results have good precision, the measured ridge yields in pp collisions are substantially larger than the limits set in $\mathrm {e{+}e{-}}$ annihilations. Consequently, the findings presented in this Letter suggest that the processes involved in $\mathrm {e{+}e{-}}$ annihilations do not contribute significantly to the emergence of long-range correlations in pp collisions.
- STAR Collaboration, J. Adams et al., “Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions”, Nucl. Phys. A757 (2005) 102–183, arXiv:nucl-ex/0501009 [nucl-ex].
- PHENIX Collaboration, K. Adcox et al., “Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration”, Nucl. Phys. A757 (2005) 184–283, arXiv:nucl-ex/0410003 [nucl-ex].
- BRAHMS Collaboration, I. Arsene et al., “Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment”, Nucl. Phys. A757 (2005) 1–27, arXiv:nucl-ex/0410020 [nucl-ex].
- PHOBOS Collaboration, B. B. Back et al., “The PHOBOS perspective on discoveries at RHIC”, Nucl. Phys. A757 (2005) 28–101, arXiv:nucl-ex/0410022 [nucl-ex].
- ALICE Collaboration, B. Abelev et al., “Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\mathrm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG=2.76 TeV”, Phys. Lett. B719 (2013) 18–28, arXiv:1205.5761 [nucl-ex].
- ALICE Collaboration, B. Abelev et al., “Elliptic flow of identified hadrons in Pb–Pb collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\mathrm{NN}}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, JHEP 06 (2015) 190, arXiv:1405.4632 [nucl-ex].
- ATLAS Collaboration, G. Aad et al., “Measurement of the pseudorapidity and transverse momentum dependence of the elliptic flow of charged particles in lead-lead collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\mathrm{NN}}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV with the ATLAS detector”, Phys. Lett. B 707 (2012) 330–348, arXiv:1108.6018 [hep-ex].
- ATLAS Collaboration, G. Aad et al., “Observation of Long-Range Elliptic Azimuthal Anisotropies in s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG =13 and 2.76 TeV pp𝑝𝑝ppitalic_p italic_p Collisions with the ATLAS Detector”, Phys. Rev. Lett. 116 (2016) 172301, arXiv:1509.04776 [hep-ex].
- CMS Collaboration, V. Khachatryan et al., “Measurement of long-range near-side two-particle angular correlations in pp collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG =13 TeV”, Phys. Rev. Lett. 116 (2016) 172302, arXiv:1510.03068 [nucl-ex].
- CMS Collaboration, V. Khachatryan et al., “Evidence for collectivity in pp collisions at the LHC”, Phys. Lett. B 765 (2017) 193–220, arXiv:1606.06198 [nucl-ex].
- ALICE Collaboration, S. Acharya et al., “Investigations of Anisotropic Flow Using Multiparticle Azimuthal Correlations in pp, p–Pb, Xe–Xe, and Pb–Pb Collisions at the LHC”, Phys. Rev. Lett. 123 (2019) 142301, arXiv:1903.01790 [nucl-ex].
- ATLAS Collaboration, M. Aaboud et al., “Measurement of long-range multiparticle azimuthal correlations with the subevent cumulant method in pp𝑝𝑝ppitalic_p italic_p and p+Pb𝑝𝑃𝑏p+Pbitalic_p + italic_P italic_b collisions with the ATLAS detector at the CERN Large Hadron Collider”, Phys. Rev. C 97 (2018) 024904, arXiv:1708.03559 [hep-ex].
- ALICE Collaboration, B. Abelev et al., “Long-range angular correlations on the near and away side in p–Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\mathrm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Lett. B 719 (2013) 29–41, arXiv:1212.2001 [nucl-ex].
- ATLAS Collaboration, G. Aad et al., “Measurement of long-range pseudorapidity correlations and azimuthal harmonics in sNN=5.02subscript𝑠NN5.02\sqrt{s_{\mathrm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV proton-lead collisions with the ATLAS detector”, Phys. Rev. C 90 (2014) 044906, arXiv:1409.1792 [hep-ex].
- ATLAS Collaboration, M. Aaboud et al., “Measurements of long-range azimuthal anisotropies and associated Fourier coefficients for pp𝑝𝑝ppitalic_p italic_p collisions at s=5.02𝑠5.02\sqrt{s}=5.02square-root start_ARG italic_s end_ARG = 5.02 and 13131313 TeV and p𝑝pitalic_p+Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\mathrm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV with the ATLAS detector”, Phys. Rev. C 96 (2017) 024908, arXiv:1609.06213 [nucl-ex].
- CMS Collaboration, V. Khachatryan et al., “Pseudorapidity dependence of long-range two-particle correlations in p𝑝pitalic_pPb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\mathrm{NN}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Rev. C 96 (2017) 014915, arXiv:1604.05347 [nucl-ex].
- PHENIX Collaboration, C. Aidala et al., “Creation of quark–gluon plasma droplets with three distinct geometries”, Nature Phys. 15 (2019) 214–220, arXiv:1805.02973 [nucl-ex].
- PHENIX Collaboration, C. Aidala et al., “Measurements of Multiparticle Correlations in d+Au𝑑Aud+\mathrm{Au}italic_d + roman_Au Collisions at 200, 62.4, 39, and 19.6 GeV and p+Au𝑝Aup+\mathrm{Au}italic_p + roman_Au Collisions at 200 GeV and Implications for Collective Behavior”, Phys. Rev. Lett. 120 (2018) 062302, arXiv:1707.06108 [nucl-ex].
- S. A. Voloshin, A. M. Poskanzer, and R. Snellings, “Collective phenomena in non-central nuclear collisions”, Landolt-Bornstein 23 (2010) 293–333, arXiv:0809.2949 [nucl-ex].
- M. Strickland, “Small system studies: A theory overview”, Nucl. Phys. A 982 (2019) 92–98, arXiv:1807.07191 [nucl-th].
- C. Loizides, “Experimental overview on small collision systems at the LHC”, Nucl. Phys. A 956 (2016) 200–207, arXiv:1602.09138 [nucl-ex].
- J. L. Nagle and W. A. Zajc, “Small System Collectivity in Relativistic Hadronic and Nuclear Collisions”, Ann. Rev. Nucl. Part. Sci. 68 (2018) 211–235, arXiv:1801.03477 [nucl-ex].
- B. Schenke, C. Shen, and P. Tribedy, “Running the gamut of high energy nuclear collisions”, Phys. Rev. C 102 (2020) 044905, arXiv:2005.14682 [nucl-th].
- W. Zhao, S. Ryu, C. Shen, and B. Schenke, “3D structure of anisotropic flow in small collision systems at energies available at the BNL Relativistic Heavy Ion Collider”, Phys. Rev. C 107 (2023) 014904, arXiv:2211.16376 [nucl-th].
- STAR Collaboration, M. I. Abdulhamid et al., “Measurements of the Elliptic and Triangular Azimuthal Anisotropies in Central He3+Au, d+Au and p+Au Collisions at sNNsubscript𝑠NN\sqrt{s_{\mathrm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 200 GeV”, Phys. Rev. Lett. 130 (2023) 242301, arXiv:2210.11352 [nucl-ex].
- K. Dusling and R. Venugopalan, “Evidence for BFKL and saturation dynamics from dihadron spectra at the LHC”, Phys. Rev. D 87 (2013) 051502, arXiv:1210.3890 [hep-ph].
- A. Bzdak, B. Schenke, P. Tribedy, and R. Venugopalan, “Initial state geometry and the role of hydrodynamics in proton-proton, proton-nucleus and deuteron-nucleus collisions”, Phys. Rev. C 87 (2013) 064906, arXiv:1304.3403 [nucl-th].
- M. Greif, C. Greiner, B. Schenke, S. Schlichting, and Z. Xu, “Importance of initial and final state effects for azimuthal correlations in p+Pb collisions”, Phys. Rev. D 96 (2017) 091504, arXiv:1708.02076 [hep-ph].
- H. Mantysaari, B. Schenke, C. Shen, and P. Tribedy, “Imprints of fluctuating proton shapes on flow in proton-lead collisions at the LHC”, Phys. Lett. B 772 (2017) 681–686, arXiv:1705.03177 [nucl-th].
- B. Schenke, S. Schlichting, and P. Singh, “Rapidity dependence of initial state geometry and momentum correlations in p+Pb collisions”, Phys. Rev. D 105 (2022) 094023, arXiv:2201.08864 [nucl-th].
- ALEPH Collaboration, D. Decamp et al., “Aleph: A detector for electron-positron annihilations at lep”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 294 (1990) 121–178. https://www.sciencedirect.com/science/article/pii/016890029091831U.
- A. Badea, A. Baty, P. Chang, G. M. Innocenti, M. Maggi, C. Mcginn, M. Peters, T.-A. Sheng, J. Thaler, and Y.-J. Lee, “Measurements of two-particle correlations in e+e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT collisions at 91 GeV with ALEPH archived data”, Phys. Rev. Lett. 123 (2019) 212002, arXiv:1906.00489 [hep-ex].
- J. L. Nagle, R. Belmont, K. Hill, J. O. Koop, D. V. Perepelitsa, P. Yin, Z.-W. Lin, and D. McGlinchey, “Minimal conditions for collectivity in e+e−superscript𝑒superscript𝑒{e}^{+}{e}^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT and p+p𝑝𝑝p+pitalic_p + italic_p collisions”, Phys. Rev. C 97 (Feb, 2018) 024909. https://link.aps.org/doi/10.1103/PhysRevC.97.024909.
- P. Castorina, D. Lanteri, and H. Satz, “Strangeness enhancement and flow-like effects in e+e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT annihilation at high parton density”, Eur. Phys. J. A 57 (2021) 111, arXiv:2011.06966 [hep-ph].
- CMS Collaboration, V. Khachatryan et al., “Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC”, JHEP 09 (2010) 091, arXiv:1009.4122 [hep-ex].
- A. Ortiz Velasquez, P. Christiansen, E. Cuautle Flores, I. Maldonado Cervantes, and G. Paić, “Color Reconnection and Flowlike Patterns in pp𝑝𝑝ppitalic_p italic_p Collisions”, Phys. Rev. Lett. 111 (2013) 042001, arXiv:1303.6326 [hep-ph].
- C. Bierlich et al., “A comprehensive guide to the physics and usage of PYTHIA 8.3”, arXiv:2203.11601 [hep-ph].
- H. Song, S. A. Bass, U. Heinz, T. Hirano, and C. Shen, “200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid”, Phys. Rev. Lett. 106 (2011) 192301, arXiv:1011.2783 [nucl-th]. [Erratum: Phys.Rev.Lett. 109, 139904 (2012)].
- T. Pierog, I. Karpenko, J. Katzy, E. Yatsenko, and K. Werner, “EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider”, Phys. Rev. C 92 (2015) 034906, arXiv:1306.0121 [hep-ph].
- ALICE Collaboration, “The ALICE experiment – A journey through QCD”, arXiv:2211.04384 [nucl-ex].
- ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, JINST 3 (2008) S08002.
- ALICE Collaboration, B. B. Abelev et al., “Performance of the ALICE Experiment at the CERN LHC”, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402.4476 [nucl-ex].
- P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 Tune”, Eur. Phys. J. C 74 (2014) 3024, arXiv:1404.5630 [hep-ph].
- R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, and L. Urban, “GEANT Detector Description and Simulation Tool”,. https://cds.cern.ch/record/1082634.
- ALICE Collaboration, S. Acharya et al., “Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV and in p−--Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\mathrm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, arXiv:2308.16591 [nucl-ex].
- ALICE Collaboration, S. Acharya et al., “Long- and short-range correlations and their event-scale dependence in high-multiplicity pp collisions at 𝑠=13𝑠13\bm{\sqrt{{\textit{s}}}}=13square-root start_ARG s end_ARG = 13 TeV”, JHEP 05 (2021) 290, arXiv:2101.03110 [nucl-ex].
- C. Bierlich, G. Gustafson, and L. Lönnblad, “Collectivity without plasma in hadronic collisions”, Phys. Lett. B 779 (2018) 58–63, arXiv:1710.09725 [hep-ph].