Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Electron and proton energization in 3D reconnecting current sheets in semirelativistic plasma with guide magnetic field (2311.14290v2)

Published 24 Nov 2023 in astro-ph.HE and physics.plasm-ph

Abstract: Using 3D particle-in-cell simulation, we characterize energy conversion, as a function of guide magnetic field, in a thin current sheet in semirelativistic plasma, with relativistic electrons and subrelativistic protons. There, magnetic reconnection, the drift-kink instability (DKI), and the flux-rope kink instability all compete and interact in their nonlinear stages to convert magnetic energy to plasma energy. We compare fully 3D simulations with 2D in two different planes to isolate reconnection and DKI effects. In zero guide field, these processes yield distinct energy conversion signatures: ions gain more energy than electrons in 2Dxy (reconnection), while the opposite is true in 2Dyz (DKI), and the 3D result falls in between. The flux-rope instability, which occurs only in 3D, allows more magnetic energy to be released than in 2D, but the rate of energy conversion in 3D tends to be lower. Increasing the guide magnetic field strongly suppresses DKI, and in all cases slows and reduces the overall amount of energy conversion; it also favors electron energization through a process by which energy is first stored in the motional electric field of flux ropes before energizing particles. Understanding the evolution of the energy partition thus provides insight into the role of various plasma processes, and is important for modeling radiation from astrophysical sources such as accreting black holes and their jets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. Bacchini F, Arzamasskiy L, Zhdankin V, Werner GR, Begelman MC, & Uzdensky DA, 2022, “Fully Kinetic Shearing-box Simulations of Magnetorotational Turbulence in 2D and 3D. I. Pair Plasmas,” ApJ, 938(1), 86. DOI:10.3847/1538-4357/ac8a94   arXiv:2206.07061   
  2. Ball D, Sironi L, & Özel F, 2018, “Electron and Proton Acceleration in Trans-relativistic Magnetic Reconnection: Dependence on Plasma Beta and Magnetization,” ApJ, 862(1), 80. DOI:10.3847/1538-4357/aac820   arXiv:1803.05556   
  3. Ball D, Sironi L, & Özel F, 2019, “The Mechanism of Electron Injection and Acceleration in Transrelativistic Reconnection,” ApJ, 884(1), 57. DOI:10.3847/1538-4357/ab3f2e   arXiv:1908.05866   
  4. Cerutti B, Werner GR, Uzdensky DA, & Begelman MC, 2013, “Simulations of Particle Acceleration beyond the Classical Synchrotron Burnoff Limit in Magnetic Reconnection: An Explanation of the Crab Flares,” ApJ, 770, 147. DOI:10.1088/0004-637X/770/2/147   arXiv:1302.6247   
  5. Cerutti B, Werner GR, Uzdensky DA, & Begelman MC, 2014, “Three-dimensional Relativistic Pair Plasma Reconnection with Radiative Feedback in the Crab Nebula,” ApJ, 782, 104. DOI:10.1088/0004-637X/782/2/104   arXiv:1311.2605   
  6. Chael A, Rowan M, Narayan R, Johnson M, & Sironi L, 2018, “The role of electron heating physics in images and variability of the Galactic Centre black hole Sagittarius A*,” MNRAS, 478(4), 5209–5229. DOI:10.1093/mnras/sty1261   arXiv:1804.06416   
  7. Chashkina A, Bromberg O, & Levinson A, 2021, “GRMHD simulations of BH activation by small scale magnetic loops: formation of striped jets and active coronae,” MNRAS, 508(1), 1241–1252. DOI:10.1093/mnras/stab2513   arXiv:2106.15738   
  8. Chernoglazov A, Hakobyan H, & Philippov A, 2023, “High-energy Radiation and Ion Acceleration in Three-dimensional Relativistic Magnetic Reconnection with Strong Synchrotron Cooling,” ApJ, 959(2), 122. DOI:10.3847/1538-4357/acffc6   arXiv:2305.02348   
  9. Daughton W, 1999, “Two-fluid theory of the drift kink instability,” J. Geophys. Res., 104(A12), 28701–28708. DOI:10.1029/1999JA900388   
  10. Dexter J, Jiménez-Rosales A, Ressler SM, Tchekhovskoy A, Bauböck M, de Zeeuw PT, Eisenhauer F, von Fellenberg S, Gao F, Genzel R, Gillessen S, Habibi M, Ott T, Stadler J, Straub O, & Widmann F, 2020, “A parameter survey of Sgr A* radiative models from GRMHD simulations with self-consistent electron heating,” MNRAS, 494(3), 4168–4186. DOI:10.1093/mnras/staa922   arXiv:2004.00019   
  11. Galeev A, Rosner R, & Vaiana G, 1979, “Structured coronae of accretion disks,” ApJ, 229, 318
  12. Guo F, Li H, Daughton W, & Liu YH, 2014, “Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection,” Phys. Rev. Lett., 113, 155005. DOI:10.1103/PhysRevLett.113.155005
  13. Guo F, Li X, Daughton W, Li H, Kilian P, Liu YH, Zhang Q, & Zhang H, 2021, “Magnetic Energy Release, Plasma Dynamics, and Particle Acceleration in Relativistic Turbulent Magnetic Reconnection,” ApJ, 919(2), 111. DOI:10.3847/1538-4357/ac0918   arXiv:2008.02743   
  14. Guo F, Li X, Li H, Daughton W, Zhang B, Lloyd-Ronning N, Liu YH, Zhang H, & Deng W, 2016, “Efficient production of high-energy nonthermal particles during reconnection in a magnetically dominated ion-electron plasma,” ApJ Lett., 818(1), L9
  15. Guo F, Liu YH, Daughton W, & Li H, 2015, “Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime,” ApJ, 806(2), 167
  16. Hankla AM, Scepi N, & Dexter J, 2022, “Non-thermal emission from the plunging region: a model for the high-energy tail of black hole X-ray binary soft states,” MNRAS, 515(1), 775–784. DOI:10.1093/mnras/stac1785   arXiv:2206.12018   
  17. Hesse M, & Birn J, 2000, “Near- and Mid-tail Current Flow During Substorms: Small- and Large-Scale Aspects of Current Disruption,” Geophysical Monograph Series, 118, 295. DOI:10.1029/GM118p0295   
  18. Kagan D, Milosavljević M, & Spitkovsky A, 2013, “A Flux Rope Network and Particle Acceleration in Three-dimensional Relativistic Magnetic Reconnection,” ApJ, 774, 41. DOI:10.1088/0004-637X/774/1/41   arXiv:1208.0849   
  19. Liu W, Li H, Yin L, Albright BJ, Bowers KJ, & Liang EP, 2011, “Particle energization in 3D magnetic reconnection of relativistic pair plasmas,” Physics of Plasmas, 18(5), 052105. DOI:10.1063/1.3589304   arXiv:1005.2435   
  20. Liu YH, Daughton W, Karimabadi H, Li H, & Peter Gary S, 2014, “Do dispersive waves play a role in collisionless magnetic reconnection?,” Phys. Plasmas, 21(2), 022113. DOI:10.1063/1.4865579   
  21. Markidis S, Lapenta G, Delzanno GL, Henri P, Goldman MV, Newman DL, Intrator T, & Laure E, 2014, “Signatures of secondary collisionless magnetic reconnection driven by kink instability of a flux rope,” Plasma Phys. Contr. F., 56(6), 064010. DOI:10.1088/0741-3335/56/6/064010   arXiv:1408.1144   
  22. Melzani M, Walder R, Folini D, Winisdoerffer C, & Favre JM, 2014a, “The energetics of relativistic magnetic reconnection: ion-electron repartition and particle distribution hardness,” Astron. Astrophys., 570, A112
  23. Melzani M, Walder R, Folini D, Winisdoerffer C, & Favre JM, 2014b, “Relativistic magnetic reconnection in collisionless ion-electron plasmas explored with particle-in-cell simulations,” Astron. Astrophys., 570, A111
  24. Ozaki M, Sato T, Horiuchi R, & Complexity Simulation Group, 1996, “Electromagnetic instability and anomalous resistivity in a magnetic neutral sheet,” Phys. Plasmas, 3(6), 2265–2274. DOI:10.1063/1.871908   
  25. Pritchett PL, & Coroniti FV, 1996, “The Role of the Drift Kink Mode in Destabilizing Thin Current Sheets,” J. Geomagn. Geoelectr., 48(5), 833–844. DOI:10.5636/jgg.48.833   
  26. Pritchett PL, Coroniti FV, & Decyk VK, 1996, “Three-dimensional stability of thin quasi-neutral current sheets,” J. Geophys. Res., 101(A12), 27413–27430. DOI:10.1029/96JA02665   
  27. Ressler SM, White CJ, & Quataert E, 2023, “Wind-fed GRMHD simulations of Sagittarius A*: tilt and alignment of jets and accretion discs, electron thermodynamics, and multiscale modelling of the rotation measure,” MNRAS, 521(3), 4277–4298. DOI:10.1093/mnras/stad837   
  28. Ressler SM, White CJ, Quataert E, & Stone JM, 2020, “Ab Initio Horizon-scale Simulations of Magnetically Arrested Accretion in Sagittarius A* Fed by Stellar Winds,” ApJ Lett., 896(1), L6. DOI:10.3847/2041-8213/ab9532   arXiv:2006.00005   
  29. Ripperda B, Bacchini F, & Philippov AA, 2020, “Magnetic Reconnection and Hot Spot Formation in Black Hole Accretion Disks,” ApJ, 900(2), 100. DOI:10.3847/1538-4357/ababab   arXiv:2003.04330   
  30. Rowan ME, Sironi L, & Narayan R, 2017, “Electron and Proton Heating in Transrelativistic Magnetic Reconnection,” ApJ, 850(1), 29. DOI:10.3847/1538-4357/aa9380   arXiv:1708.04627   
  31. Rowan ME, Sironi L, & Narayan R, 2019, “Electron and Proton Heating in Transrelativistic Guide Field Reconnection,” ApJ, 873(1), 2. DOI:10.3847/1538-4357/ab03d7   arXiv:1901.05438   
  32. Scepi N, Dexter J, & Begelman MC, 2022, “Sgr A* X-ray flares from non-thermal particle acceleration in a magnetically arrested disc,” MNRAS, 511(3), 3536–3547. DOI:10.1093/mnras/stac337   arXiv:2107.08056   
  33. Schoeffler KM, Grismayer T, Uzdensky D, & Silva LO, 2023, “High-energy synchrotron flares powered by strongly radiative relativistic magnetic reconnection: 2D and 3D PIC simulations,” MNRAS, 523(3), 3812–3839. DOI:10.1093/mnras/stad1588   arXiv:2303.16643   
  34. Scholer M, Sidorenko I, Jaroschek CH, Treumann RA, & Zeiler A, 2003, “Onset of collisionless magnetic reconnection in thin current sheets: Three-dimensional particle simulations,” Phys. Plasmas, 10(9), 3521–3527. DOI:10.1063/1.1597494   
  35. Sironi L, Giannios D, & Petropoulou M, 2016, “Plasmoids in relativistic reconnection, from birth to adulthood: first they grow, then they go,” MNRAS, 462, 48–74. DOI:10.1093/mnras/stw1620   arXiv:1605.02071   
  36. Sironi L, & Spitkovsky A, 2014, “Relativistic Reconnection: An Efficient Source of Non-thermal Particles,” ApJ Lett., 783, L21. DOI:10.1088/2041-8205/783/1/L21   arXiv:1401.5471   
  37. Uzdensky DA, & Goodman J, 2008, “Statistical description of a magnetized corona above a turbulent accretion disk,” ApJ, 682(1), 608
  38. Werner GR, & Uzdensky DA, 2017, “Nonthermal Particle Acceleration in 3D Relativistic Magnetic Reconnection in Pair Plasma,” ApJ Lett., 843, L27. DOI:10.3847/2041-8213/aa7892   arXiv:1705.05507   
  39. Werner GR, & Uzdensky DA, 2021, “Reconnection and particle acceleration in three-dimensional current sheet evolution in moderately magnetized astrophysical pair plasma,” J. Plasma Phys., 87(6), 905870613. DOI:10.1017/S0022377821001185   arXiv:2106.02790   
  40. Werner GR, Uzdensky DA, Begelman MC, Cerutti B, & Nalewajko K, 2018, “Non-thermal particle acceleration in collisionless relativistic electron-proton reconnection,” MNRAS, 473, 4840–4861. DOI:10.1093/mnras/stx2530   arXiv:1612.04493   
  41. Werner GR, Uzdensky DA, Cerutti B, Nalewajko K, & Begelman MC, 2016, “The Extent of Power-law Energy Spectra in Collisionless Relativistic Magnetic Reconnection in Pair Plasmas,” ApJ Lett., 816, L8. DOI:10.3847/2041-8205/816/1/L8   arXiv:1409.8262   
  42. Yamada M, Yoo J, Jara-Almonte J, Ji H, Kulsrud RM, & Myers CE, 2014, “Conversion of magnetic energy in the magnetic reconnection layer of a laboratory plasma,” Nat. Commun., 5, 4774. DOI:10.1038/ncomms5774   
  43. Yin L, Daughton W, Karimabadi H, Albright BJ, Bowers KJ, & Margulies J, 2008, “Three-Dimensional Dynamics of Collisionless Magnetic Reconnection in Large-Scale Pair Plasmas,” Phys. Rev. Lett., 101(12), 125001. DOI:10.1103/PhysRevLett.101.125001   
  44. Zenitani S, & Hoshino M, 2005, “Three-Dimensional Evolution of a Relativistic Current Sheet: Triggering of Magnetic Reconnection by the Guide Field,” Phys. Rev. Lett., 95(9), 095001. DOI:10.1103/PhysRevLett.95.095001   arXiv:astro-ph/0505493   
  45. Zenitani S, & Hoshino M, 2007, “Particle Acceleration and Magnetic Dissipation in Relativistic Current Sheet of Pair Plasmas,” ApJ, 670, 702–726. DOI:10.1086/522226   arXiv:0708.1000   
  46. Zenitani S, & Hoshino M, 2008, “The Role of the Guide Field in Relativistic Pair Plasma Reconnection,” ApJ, 677, 530–544. DOI:10.1086/528708   arXiv:0712.2016   
  47. Zhang H, Sironi L, & Giannios D, 2021a, “Fast Particle Acceleration in Three-dimensional Relativistic Reconnection,” ApJ, 922(2), 261. DOI:10.3847/1538-4357/ac2e08   arXiv:2105.00009   
  48. Zhang Q, Guo F, Daughton W, Li H, & Li X, 2021b, “Efficient Nonthermal Ion and Electron Acceleration Enabled by the Flux-Rope Kink Instability in 3D Nonrelativistic Magnetic Reconnection,” Phys. Rev. Lett., 127(18), 185101. DOI:10.1103/PhysRevLett.127.185101   arXiv:2105.04521   
  49. Zhdankin V, Ripperda B, & Philippov AA, 2023, “Particle acceleration by magnetic Rayleigh-Taylor instability: Mechanism for flares in black hole accretion flows,” Phys. Rev. Research, 5(4), 043023. DOI:10.1103/PhysRevResearch.5.043023   arXiv:2302.05276   
  50. Zhu Z, & Winglee RM, 1996, “Tearing instability, flux ropes, and the kinetic current sheet kink instability in the Earth’s magnetotail: A three-dimensional perspective from particle simulations,” J. Geophys. Res., 101(A3), 4885–4898. DOI:10.1029/95JA03144   
  51. Zweibel EG, & Yamada M, 2009, “Magnetic Reconnection in Astrophysical and Laboratory Plasmas,” ARA&A, 47, 291–332. DOI:10.1146/annurev-astro-082708-101726   
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com