Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information Velocity of Cascaded Gaussian Channels with Feedback (2311.14223v1)

Published 23 Nov 2023 in cs.IT and math.IT

Abstract: We consider a line network of nodes, connected by additive white Gaussian noise channels, equipped with local feedback. We study the velocity at which information spreads over this network. For transmission of a data packet, we give an explicit positive lower bound on the velocity, for any packet size. Furthermore, we consider streaming, that is, transmission of data packets generated at a given average arrival rate. We show that a positive velocity exists as long as the arrival rate is below the individual Gaussian channel capacity, and provide an explicit lower bound. Our analysis involves applying pulse-amplitude modulation to the data (successively in the streaming case), and using linear mean-squared error estimation at the network nodes. Due to the analog linear nature of the scheme, the results extend to any additive noise. For general noise, we derive exponential error-probability bounds. Moreover, for (sub-)Gaussian noise we show a doubly-exponential behavior, which reduces to the celebrated Schalkwijk-Kailath scheme when considering a single node. Viewing the constellation as an "analog source", we also provide bounds on the exponential decay of the mean-squared error of source transmission over the network.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. J.-A. Girault and E. Peles, “Development of nodes of Ranvier,” Current opinion in neurobiology, vol. 12, no. 5, pp. 476–485, 2002.
  2. T. Berger and W. B. Levy, “A mathematical theory of energy efficient neural computation and communication,” vol. 56, no. 2, pp. 852–874, 2010.
  3. P. Suksompong and T. Berger, “Capacity analysis for integrate-and-fire neurons with descending action potential thresholds,” IEEE Transactions on Information Theory, vol. 56, no. 2, pp. 838–851, 2010.
  4. J. Heinovski and F. Dressler, “Platoon formation: Optimized car to platoon assignment strategies and protocols,” in IEEE Vehicular Networking Conference (VNC), 2018.
  5. T. Nawaz, M. Seminara, S. Caputo, L. Mucchi, F. S. Cataliotti, and J. Catani, “IEEE 802.15. 7-compliant ultra-low latency relaying VLC system for safety-critical ITS,” IEEE Transactions on Vehicular Technology, vol. 68, no. 12, pp. 12 040–12 051, 2019.
  6. W. Huleihel, Y. Polyanskiy, and O. Shayevitz, “Relaying one bit across a tandem of binary-symmetric channels,” in Proceedings of the IEEE International Symposium on Information Theory (ISIT), Paris, France, 2019, pp. 2928–2932.
  7. V. Jog and P.-L. Loh, “Teaching and learning in uncertainty,” IEEE Transactions on Information Theory, vol. 67, no. 1, pp. 598–615, 2020.
  8. Y. H. Ling and J. Scarlett, “Optimal rates of teaching and learning under uncertainty,” IEEE Transactions on Information Theory, vol. 67, no. 11, pp. 7067–7080, August 2021.
  9. ——, “Multi-bit relaying over a tandem of channels,” IEEE Transactions on Information Theory, vol. 69, no. 6, pp. 3511–3524, June 2023.
  10. S. Rajagopalan and L. Schulman, “A coding theorem for distributed computation,” in Proceedings of the ACM Symposium on Theory of Computing (STOC), 1994, pp. 790–799.
  11. S. K. Iyer and R. Vaze, “Achieving non-zero information velocity in wireless networks,” in Proceedings of the Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt), 2015, pp. 584–590.
  12. Y. H. Ling and J. Scarlett, “Simple coding techniques for many-hop relaying,” IEEE Transactions on Information Theory, vol. 68, no. 11, pp. 7043–7053, June 2022.
  13. M. Fidler, “Survey of deterministic and stochastic service curve models in the network calculus,” IEEE Communications Surveys Tutorials, vol. 12, no. 1, pp. 59–86, 2010.
  14. M. Fidler and A. Rizk, “A guide to the stochastic network calculus,” IEEE Communications Surveys Tutorials, vol. 17, no. 1, pp. 92–105, 2015.
  15. M. Fidler, “An end-to-end probabilistic network calculus with moment generating functions,” in IEEE International Workshop on Quality of Service (IWQoS), 2006, pp. 261–270.
  16. E. Domanovitz, T. Philosof, and A. Khina, “The information velocity of packet-erasure links,” in Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), May 2022.
  17. A. Lalitha, A. Khina, T. Javidi, and V. Kostina, “Real-time binary posterior matching,” in Proceedings of the IEEE International Symposium on Information Theory (ISIT), Paris, France, Jul. 2019, pp. 2239–2243.
  18. J. P. M. Schalkwijk and T. Kailath, “A coding scheme for additive noise channels with feedback–I: No bandwidth constraint,” IEEE Transactions on Information Theory, vol. 12, pp. 172–182, Apr. 1966.
  19. J. P. M. Schalkwijk, “A coding scheme for additive noise channels with feedback–ii: Band-limited signals,” IEEE Transactions on Information Theory, vol. 12, no. 2, pp. 183–189, April 1966.
  20. R. G. Gallager and B. Nakiboğlu, “Variations on a theme by Schalkwijk and Kailath,” vol. 56, no. 1, pp. 6–17, Dec. 2009.
  21. P. Elias, “Channel capacity without coding,” in Proceedings of the IRE, vol. 45, no. 3, Jan. 1957, pp. 381–381.
  22. B. Schein and R. G. Gallager, “The Gaussian parallel relay channel,” in Proc. Int. Symp. Info. Theory (ISIT), Sorrento, Italy, June 2000, p. 22.
  23. J. N. Laneman, D. N. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Transactions on Information theory, vol. 50, no. 12, pp. 3062–3080, Novmber 2004.
  24. Y. Kochman, A. Khina, U. Erez, and R. Zamir, “Rematch-and-forward: Joint source/channel coding for parallel relaying with spectral mismatch,” IEEE Transactions on Information Theory, vol. 60, no. 1, pp. 605–622, Jan. 2014.
  25. H. Yamamoto and K. Itoh, “Source coding theory for multiterminal communication systems with a remote source,” Tran. IECE of Japan, vol. E 63, no. 10, pp. 700–706, 1980.
  26. T. Berger, Z. Zhang, and H. Viswanathan, “The CEO problem [multiterminal source coding],” IEEE Transactions on Information Theory, vol. 42, no. 3, pp. 887–902, 1996.
  27. A. B. Wagner, S. Tavildar, and P. Viswanath, “Rate region of the quadratic Gaussian two-encoder source-coding problem,” IEEE Transactions on Information Theory, vol. 54, no. 5, pp. 1938–1961, 2008.
  28. S. C. Draper and G. W. Wornell, “Successively structured CEO problems,” Lausanne, Switzerland, July 2002, p. 65.
  29. ——, “Side information aware coding strategies for sensor networks,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 6, pp. 966–976, 2004.
  30. J. Chen, X. Zhang, T. Berger, and S. Wicker, “Rate allocation in distributed sensor network,” vol. 41, no. 1, Monticello, IL, USA, October 2003, pp. 531–540.
  31. W. H. R. Equitz and T. M. Cover, “Successive refinement of information,” IEEE Transactions on Information Theory, vol. 37, no. 2, pp. 851–857, Mar. 1991.
  32. L. Lastras and T. Berger, “All sources are nearly successively refinable,” IEEE Transactions on Information Theory, vol. 47, pp. 918–926, March 2001.
  33. A. Ben-Yishai and O. Shayevitz, “The Gaussian channel with noisy feedback: Improving reliability via interaction,” in Proceedings of the IEEE International Symposium on Information Theory (ISIT), Hong Kong, June 2015, pp. 2500–2504.
Citations (2)

Summary

We haven't generated a summary for this paper yet.