Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Class Uncertainty: A Measure to Mitigate Class Imbalance (2311.14090v1)

Published 23 Nov 2023 in cs.LG and cs.CV

Abstract: Class-wise characteristics of training examples affect the performance of deep classifiers. A well-studied example is when the number of training examples of classes follows a long-tailed distribution, a situation that is likely to yield sub-optimal performance for under-represented classes. This class imbalance problem is conventionally addressed by approaches relying on the class-wise cardinality of training examples, such as data resampling. In this paper, we demonstrate that considering solely the cardinality of classes does not cover all issues causing class imbalance. To measure class imbalance, we propose "Class Uncertainty" as the average predictive uncertainty of the training examples, and we show that this novel measure captures the differences across classes better than cardinality. We also curate SVCI-20 as a novel dataset in which the classes have equal number of training examples but they differ in terms of their hardness; thereby causing a type of class imbalance which cannot be addressed by the approaches relying on cardinality. We incorporate our "Class Uncertainty" measure into a diverse set of ten class imbalance mitigation methods to demonstrate its effectiveness on long-tailed datasets as well as on our SVCI-20. Code and datasets will be made available.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. L. Shen, Z. Lin, and Q. Huang, “Relay backpropagation for effective learning of deep convolutional neural networks,” in ECCV, 2016.
  2. J. Peng, X. Bu, M. Sun, Z. Zhang, T. Tan, and J. Yan, “Large-scale object detection in the wild from imbalanced multi-labels,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
  3. B. Kang, S. Xie, M. Rohrbach, Z. Yan, A. Gordo, J. Feng, and Y. Kalantidis, “Decoupling representation and classifier for long-tailed recognition,” in International Conference on Learning Representations (ICLR), 2020.
  4. N. Japkowicz and S. Stephen, “The class imbalance problem: A systematic study,” Intell. Data Anal., vol. 6, no. 5, p. 429–449, 2002.
  5. Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, “Class-balanced loss based on effective number of samples,” in CVPR, 2019.
  6. M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight examples for robust deep learning,” in Proceedings of the 35th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80.   PMLR, 2018, pp. 4334–4343. [Online]. Available: https://proceedings.mlr.press/v80/ren18a.html
  7. J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng, “Meta-weight-net: Learning an explicit mapping for sample weighting,” in NeurIPS, 2019.
  8. M. A. Jamal, M. Brown, M. Yang, L. Wang, and B. Gong, “Rethinking class-balanced methods for long-tailed visual recognition from a domain adaptation perspective,” CoRR, vol. abs/2003.10780, 2020. [Online]. Available: https://arxiv.org/abs/2003.10780
  9. S. Park, J. Lim, Y. Jeon, and J. Y. Choi, “Influence-balanced loss for imbalanced visual classification,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 735–744.
  10. K. R. M. Fernando and C. P. Tsokos, “Dynamically weighted balanced loss: Class imbalanced learning and confidence calibration of deep neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. PP, pp. 1–12, Jan. 2021.
  11. K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma, “Learning imbalanced datasets with label-distribution-aware margin loss,” in Advances in Neural Information Processing Systems, 2019.
  12. S. Khan, M. Hayat, S. W. Zamir, J. Shen, and L. Shao, “Striking the right balance with uncertainty,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 103–112.
  13. A. K. Menon, S. Jayasumana, A. S. Rawat, H. Jain, A. Veit, and S. Kumar, “Long-tail learning via logit adjustment,” in International Conference on Learning Representations, 2021. [Online]. Available: https://openreview.net/forum?id=37nvvqkCo5
  14. G. R. Kini, O. Paraskevas, S. Oymak, and C. Thrampoulidis, “Label-imbalanced and group-sensitive classification under overparameterization,” Advances in Neural Information Processing Systems, vol. 34, pp. 18 970–18 983, 2021.
  15. D. Samuel and G. Chechik, “Distributional robustness loss for long-tail learning,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021.
  16. Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu, “Large-scale long-tailed recognition in an open world,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
  17. L. Yang, H. Jiang, Q. Song, and J. Guo, “A survey on long-tailed visual recognition,” International Journal of Computer Vision, pp. 1–36, 2022.
  18. K. Oksuz, B. C. Cam, S. Kalkan, and E. Akbas, “Imbalance problems in object detection: A review,” IEEE transactions on pattern analysis and machine intelligence, vol. 43, no. 10, pp. 3388–3415, 2020.
  19. B. Krawczyk, “Learning from imbalanced data: open challenges and future directions,” Progress in Artificial Intelligence, vol. 5, pp. 221–232, 2016.
  20. S. Das, S. S. Mullick, and I. Zelinka, “On supervised class-imbalanced learning: An updated perspective and some key challenges,” IEEE Transactions on Artificial Intelligence, pp. 1–1, 2022.
  21. J. Cheong, S. Kalkan, and H. Gunes, “The hitchhiker’s guide to bias and fairness in facial affective signal processing: Overview and techniques,” IEEE Signal Processing Magazine, vol. 38, no. 6, pp. 39–49, 2021.
  22. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2999–3007.
  23. A. Shrivastava, A. Gupta, and R. Girshick, “Training region-based object detectors with online hard example mining,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
  24. K. Chen, W. Lin, J. li, J. See, J. Wang, and J. Zou, “Ap-loss for accurate one-stage object detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), pp. 1–1, 2020.
  25. K. Oksuz, B. C. Cam, E. Akbas, and S. Kalkan, “A ranking-based, balanced loss function unifying classification and localisation in object detection,” in Advances in Neural Information Processing Systems (NeurIPS), 2020.
  26. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in The International Conference on Learning Representations (ICLR), 2015.
  27. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
  28. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in The International Conference on Machine Learning (ICML), 2015.
  29. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
  30. S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks,” arXiv, vol. 1611.05431, 2016.
  31. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2261–2269.
  32. Y. Zhang, X. Wei, B. Zhou, and J. Wu, “Bag of tricks for long-tailed visual recognition with deep convolutional neural networks,” in AAAI, 2021, pp. 3447–3455.
  33. S. Zhang, Z. Li, S. Yan, X. He, and J. Sun, “Distribution alignment: A unified framework for long-tail visual recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 2361–2370.
  34. Z. Zhong, J. Cui, S. Liu, and J. Jia, “Improving calibration for long-tailed recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 16 489–16 498.
  35. A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep learning for computer vision?” in Advances in Neural Information Processing Systems (NeurIPS), 2017.
  36. J. Mukhoti, V. Kulharia, A. Sanyal, S. Golodetz, P. Torr, and P. Dokania, “Calibrating deep neural networks using focal loss,” in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33.   Curran Associates, Inc., 2020, pp. 15 288–15 299. [Online]. Available: https://proceedings.neurips.cc/paper/2020/file/aeb7b30ef1d024a76f21a1d40e30c302-Paper.pdf
  37. B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable predictive uncertainty estimation using deep ensembles,” in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30.   Curran Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
  38. F. Pinto, H. Yang, S.-N. Lim, P. H. S. Torr, and P. K. Dokania, “Regmixup: Mixup as a regularizer can surprisingly improve accuracy and out distribution robustness,” in Advances in Neural Information Processing Systems (NeurIPS), 2022.
  39. V. Kuleshov, N. Fenner, and S. Ermon, “Accurate uncertainties for deep learning using calibrated regression,” in International Conference on Machine Learning (ICML), 2018.
  40. A. Dave, P. Dollár, D. Ramanan, A. Kirillov, and R. B. Girshick, “Evaluating large-vocabulary object detectors: The devil is in the details,” arXiv e-prints:2102.01066, 2021.
  41. T.-Y. Pan, C. Zhang, Y. Li, H. Hu, D. Xuan, S. Changpinyo, B. Gong, and W.-L. Chao, “On model calibration for long-tailed object detection and instance segmentation,” in Advances in Neural Information Processing Systems (NeurIPS), M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34.   Curran Associates, Inc., 2021, pp. 2529–2542.
  42. C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural networks,” in Proceedings of the 34th International Conference on Machine Learning (ICML), ser. Proceedings of Machine Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70.   PMLR, 2017, pp. 1321–1330.
  43. A. Kumar, P. S. Liang, and T. Ma, “Verified uncertainty calibration,” in Advances in Neural Information Processing Systems (NeurIPS), vol. 32, 2019.
  44. J. Peng, X. Bu, M. Sun, Z. Zhang, T. Tan, and J. Yan, “Large-scale object detection in the wild from imbalanced multi-labels,” 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9706–9715, 2020.
  45. A. Krizhevsky, “Learning multiple layers of features from tiny images,” Tech. Rep., 2009.
  46. J. Van Amersfoort, L. Smith, Y. W. Teh, and Y. Gal, “Uncertainty estimation using a single deep deterministic neural network,” in International conference on machine learning.   PMLR, 2020, pp. 9690–9700.
  47. Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits in natural images with unsupervised feature learning,” in NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2011.
  48. P. Pope, C. Zhu, A. Abdelkader, M. Goldblum, and T. Goldstein, “The intrinsic dimension of images and its impact on learning,” in International Conference on Learning Representations (ICLR), 2021.
Citations (2)

Summary

We haven't generated a summary for this paper yet.