Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge Distillation Based Semantic Communications For Multiple Users (2311.13789v1)

Published 23 Nov 2023 in eess.SP and cs.LG

Abstract: Deep learning (DL) has shown great potential in revolutionizing the traditional communications system. Many applications in communications have adopted DL techniques due to their powerful representation ability. However, the learning-based methods can be dependent on the training dataset and perform worse on unseen interference due to limited model generalizability and complexity. In this paper, we consider the semantic communication (SemCom) system with multiple users, where there is a limited number of training samples and unexpected interference. To improve the model generalization ability and reduce the model size, we propose a knowledge distillation (KD) based system where Transformer based encoder-decoder is implemented as the semantic encoder-decoder and fully connected neural networks are implemented as the channel encoder-decoder. Specifically, four types of knowledge transfer and model compression are analyzed. Important system and model parameters are considered, including the level of noise and interference, the number of interfering users and the size of the encoder and decoder. Numerical results demonstrate that KD significantly improves the robustness and the generalization ability when applied to unexpected interference, and it reduces the performance loss when compressing the model size.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chenguang Liu (25 papers)
  2. Yuxin Zhou (11 papers)
  3. Yunfei Chen (68 papers)
  4. Shuang-Hua Yang (15 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.