Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards a measurement theory in QFT: "Impossible" quantum measurements are possible but not ideal (2311.13644v2)

Published 22 Nov 2023 in quant-ph, gr-qc, and hep-th

Abstract: Naive attempts to put together relativity and quantum measurements lead to signaling between space-like separated regions. In QFT, these are known as impossible measurements. We show that the same problem arises in non-relativistic quantum physics, where joint nonlocal measurements (i.e., between systems kept spatially separated) in general lead to signaling, while one would expect no-signaling (based for instance on the principle of no-nonphysical communication). This raises the question: Which nonlocal quantum measurements are physically possible? We review and develop further a non-relativistic quantum information approach developed independently of the impossible measurements in QFT, and show that these two have been addressing virtually the same problem. The non-relativistic solution shows that all nonlocal measurements are localizable (i.e., they can be carried out at a distance without violating no-signaling) but they (i) may require arbitrarily large entangled resources and (ii) cannot in general be ideal, i.e., are not immediately reproducible. These considerations could help guide the development of a complete theory of measurement in QFT.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. “Erweiterung des Unbestimmtheitsprinzips für die relativistische Quantentheorie”. Zeitschrift für Physik 69, 56–69 (1931).
  2. Paul Arthur Schilpp. “The library of living philosophers, volume 7. Albert Einstein: Philosopher-scientist”. Tudor Publishing Company.  (1949).
  3. K-E Hellwig and K Kraus. “Formal description of measurements in local quantum field theory”. Physical Review D 1, 566 (1970).
  4. “States and observables in relativistic quantum field theories”. Physical Review D 21, 3316 (1980).
  5. “Can we make sense out of the measurement process in relativistic quantum mechanics?”. Physical Review D 24, 359 (1981).
  6. “Single-photon space-like antibunching”. Physics Letters A 376, 2174–2177 (2012).
  7. “Relativistic causality in algebraic quantum field theory”. International Studies in the Philosophy of Science 28, 1–48 (2014).
  8. Rafael D Sorkin. “Impossible measurements on quantum fields”. In Directions in general relativity: Proceedings of the 1993 International Symposium, Maryland. Volume 2, pages 293–305.  (1993).
  9. “Note on episodes in the history of modeling measurements in local spacetime regions using QFT”. The European Physical Journal H 48, 14 (2023).
  10. “Eliminating the" impossible": Recent progress on local measurement theory for quantum field theory” (2023). arXiv:2307.08524.
  11. “Impossible measurements revisited”. Physical Review D 104, 025012 (2021).
  12. I Jubb. “Causal state updates in real scalar quantum field theory”. Physical Review D 105, 025003 (2022).
  13. “Are ideal measurements of real scalar fields causal?” (2023).
  14. “Quantum fields and local measurements”. Communications in Mathematical physics 378, 851–889 (2020).
  15. Christopher J Fewster. “A generally covariant measurement scheme for quantum field theory in curved spacetimes”. In Progress and Visions in Quantum Theory in View of Gravity: Bridging foundations of physics and mathematics. Pages 253–268. Springer (2020).
  16. “Impossible measurements require impossible apparatus”. Physical Review D 103, 025017 (2021).
  17. “Measurement in quantum field theory” (2023). arXiv:2304.13356.
  18. Nicolas Gisin. “Quantum chance: Nonlocality, teleportation and other quantum marvels”. Springer.  (2014).
  19. “Measurement process in relativistic quantum theory”. Physical Review D 34, 1805 (1986).
  20. “Causality constraints on nonlocal quantum measurements”. Physical Review A 49, 4331 (1994).
  21. “Nonlocal variables with product-state eigenstates”. Journal of Physics A: Mathematical and General 34, 6881 (2001).
  22. “Measurements of semilocal and nonmaximally entangled states”. Physical Review A 66, 022110 (2002).
  23. Lev Vaidman. “Instantaneous measurement of nonlocal variables”. Physical Review Letters 90, 010402 (2003).
  24. “Instantaneous measurements of nonlocal variables”. Journal of Modern Optics 50, 943–949 (2003).
  25. “Entanglement consumption of instantaneous nonlocal quantum measurements”. New Journal of Physics 12, 083034 (2010).
  26. “Simplified instantaneous non-local quantum computation with applications to position-based cryptography”. New Journal of Physics 13, 093036 (2011).
  27. “Bounds on instantaneous nonlocal quantum computation”. IEEE Transactions on Information Theory 66, 2951–2963 (2019).
  28. “Causal and localizable quantum operations”. Physical Review A 64, 052309 (2001).
  29. Nicolas Gisin. “Entanglement 25 years after quantum teleportation: Testing joint measurements in quantum networks”. Entropy 21, 325 (2019).
  30. “Iso-entangled bases and joint measurements” (2023). arXiv:2307.06998.
  31. “Protocols for creating and distilling multipartite GHZ states with Bell pairs”. IEEE Transactions on Quantum Engineering 1, 1–10 (2020).
  32. Tein van der Lugt. “Relativistic limits on quantum operations” (2021). arXiv:2108.05904.
  33. “Semicausal operations are semilocalizable”. Europhysics Letters 57, 782 (2002).
  34. “Fresh perspectives on the foundations of quantum physics”. Nature Reviews Physics 5, 323–325 (2023).
  35. “Everything you always wanted to know about LOCC (but were afraid to ask)”. Communications in Mathematical Physics 328, 303–326 (2014).
  36. “Optimal amount of entanglement to distinguish quantum states instantaneously”. Physical Review A 92, 052337 (2015).
  37. “Joint measurements in boxworld and their role in information processing” (2022). arXiv:2209.04474.
  38. “Superluminal local operations in quantum field theory: A ping-pong ball test” (2023). arXiv:2308.16673.
  39. “On the structure of quantal proposition systems”. Helvetica Physica Acta 42, 842–848 (1969).
  40. Constantin Piron. “Axiomatique quantique”. Helvetica Physica Acta 37, 439 (1964).
  41. N Gisin. “The property lattice of spatially separated quantum systems”. Reports on Mathematical Physics 23, 363–371 (1986).
Citations (2)

Summary

We haven't generated a summary for this paper yet.