Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Double shrinkage priors for a normal mean matrix (2311.13137v2)

Published 22 Nov 2023 in math.ST and stat.TH

Abstract: We consider estimation of a normal mean matrix under the Frobenius loss. Motivated by the Efron--Morris estimator, a generalization of Stein's prior has been recently developed, which is superharmonic and shrinks the singular values towards zero. The generalized Bayes estimator with respect to this prior is minimax and dominates the maximum likelihood estimator. However, here we show that it is inadmissible by using Brown's condition. Then, we develop two types of priors that provide improved generalized Bayes estimators and examine their performance numerically. The proposed priors attain risk reduction by adding scalar shrinkage or column-wise shrinkage to singular value shrinkage. Parallel results for Bayesian predictive densities are also given.

Summary

We haven't generated a summary for this paper yet.