Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast and Interpretable Mortality Risk Scores for Critical Care Patients (2311.13015v2)

Published 21 Nov 2023 in cs.LG and cs.CY

Abstract: Prediction of mortality in intensive care unit (ICU) patients typically relies on black box models (that are unacceptable for use in hospitals) or hand-tuned interpretable models (that might lead to the loss in performance). We aim to bridge the gap between these two categories by building on modern interpretable ML techniques to design interpretable mortality risk scores that are as accurate as black boxes. We developed a new algorithm, GroupFasterRisk, which has several important benefits: it uses both hard and soft direct sparsity regularization, it incorporates group sparsity to allow more cohesive models, it allows for monotonicity constraint to include domain knowledge, and it produces many equally-good models, which allows domain experts to choose among them. For evaluation, we leveraged the largest existing public ICU monitoring datasets (MIMIC III and eICU). Models produced by GroupFasterRisk outperformed OASIS and SAPS II scores and performed similarly to APACHE IV/IVa while using at most a third of the parameters. For patients with sepsis/septicemia, acute myocardial infarction, heart failure, and acute kidney failure, GroupFasterRisk models outperformed OASIS and SOFA. Finally, different mortality prediction ML approaches performed better based on variables selected by GroupFasterRisk as compared to OASIS variables. GroupFasterRisk's models performed better than risk scores currently used in hospitals, and on par with black box ML models, while being orders of magnitude sparser. Because GroupFasterRisk produces a variety of risk scores, it allows design flexibility - the key enabler of practical model creation. GroupFasterRisk is a fast, accessible, and flexible procedure that allows learning a diverse set of sparse risk scores for mortality prediction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Chloe Qinyu Zhu (4 papers)
  2. Muhang Tian (4 papers)
  3. Lesia Semenova (8 papers)
  4. Jiachang Liu (12 papers)
  5. Jack Xu (3 papers)
  6. Joseph Scarpa (1 paper)
  7. Cynthia Rudin (135 papers)
Citations (2)
X Twitter Logo Streamline Icon: https://streamlinehq.com