Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Advancing The Rate-Distortion-Computation Frontier For Neural Image Compression (2311.12821v1)

Published 26 Sep 2023 in cs.CV, cs.LG, and eess.IV

Abstract: The rate-distortion performance of neural image compression models has exceeded the state-of-the-art for non-learned codecs, but neural codecs are still far from widespread deployment and adoption. The largest obstacle is having efficient models that are feasible on a wide variety of consumer hardware. Comparative research and evaluation is difficult due to the lack of standard benchmarking platforms and due to variations in hardware architectures and test environments. Through our rate-distortion-computation (RDC) study we demonstrate that neither floating-point operations (FLOPs) nor runtime are sufficient on their own to accurately rank neural compression methods. We also explore the RDC frontier, which leads to a family of model architectures with the best empirical trade-off between computational requirements and RD performance. Finally, we identify a novel neural compression architecture that yields state-of-the-art RD performance with rate savings of 23.1% over BPG (7.0% over VTM and 3.0% over ELIC) without requiring significantly more FLOPs than other learning-based codecs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. David Minnen (19 papers)
  2. Nick Johnston (17 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.