Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reducing the Environmental Impact of Wireless Communication via Probabilistic Machine Learning (2311.12807v1)

Published 19 Sep 2023 in cs.NI and cs.LG

Abstract: Machine learning methods are increasingly adopted in communications problems, particularly those arising in next generation wireless settings. Though seen as a key climate mitigation and societal adaptation enabler, communications related energy consumption is high and is expected to grow in future networks in spite of anticipated efficiency gains in 6G due to exponential communications traffic growth. To make meaningful climate mitigation impact in the communications sector, a mindset shift away from maximizing throughput at all cost and towards prioritizing energy efficiency is needed. Moreover, this must be adopted in both existing (without incurring further embodied carbon costs through equipment replacement) and future network infrastructure, given the long development time of mobile generations. To that end, we present summaries of two such problems, from both current and next generation network specifications, where probabilistic inference methods were used to great effect: using Bayesian parameter tuning we are able to safely reduce the energy consumption of existing hardware on a live communications network by $11\%$ whilst maintaining operator specified performance envelopes; through spatiotemporal Gaussian process surrogate modeling we reduce the overhead in a next generation hybrid beamforming system by over $60\%$, greatly improving the networks' ability to target highly mobile users such as autonomous vehicles. The Bayesian paradigm is itself helpful in terms of energy usage, since training a Bayesian optimization model can require much less computation than, say, training a deep neural network.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. A. Ryo Koblitz (1 paper)
  2. Lorenzo Maggi (19 papers)
  3. Matthew Andrews (19 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com