Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learn to Augment Network Simulators Towards Digital Network Twins (2311.12745v1)

Published 21 Nov 2023 in cs.NI and eess.SP

Abstract: Digital network twin (DNT) is a promising paradigm to replicate real-world cellular networks toward continual assessment, proactive management, and what-if analysis. Existing discussions have been focusing on using only deep learning techniques to build DNTs, which raises widespread concerns regarding their generalization, explainability, and transparency. In this paper, we explore an alternative approach to augment network simulators with context-aware neural agents. The main challenge lies in the non-trivial simulation-to-reality (sim-to-real) discrepancy between offline simulators and real-world networks. To solve the challenge, we propose a new learn-to-bridge algorithm to cost-efficiently bridge the sim-to-real discrepancy in two alternative stages. In the first stage, we select states to query performances in real-world networks by using newly-designed cost-aware Bayesian optimization. In the second stage, we train the neural agent to learn the state context and bridge the probabilistic discrepancy based on Bayesian neural networks (BNN). In addition, we build a small-scale end-to-end network testbed based on OpenAirInterface RAN and Core with USRP B210 and a smartphone, and replicate the network in NS-3. The evaluation results show that, our proposed solution substantially outperforms existing methods, with more than 92\% reduction in the sim-to-real discrepancy.

Summary

We haven't generated a summary for this paper yet.