A frame approach for equations involving the fractional Laplacian (2311.12451v2)
Abstract: Exceptionally elegant formulae exist for the fractional Laplacian operator applied to weighted classical orthogonal polynomials. We utilize these results to construct a solver, based on frame properties, for equations involving the fractional Laplacian of any power, $s \in (0,1)$, on an unbounded domain in one or two dimensions. The numerical method represents solutions in an expansion of weighted classical orthogonal polynomials as well as their unweighted counterparts with a specific extension to $\mathbb{R}d$, $d \in {1,2}$. We examine the frame properties of this family of functions for the solution expansion and, under standard frame conditions, derive an a priori estimate for the stationary equation. Moreover, we prove one achieves the expected order of convergence when considering an implicit Euler discretization in time for the fractional heat equation. We apply our solver to numerous examples including the fractional heat equation (utilizing up to a $6\text{th}$-order Runge--Kutta time discretization), a fractional heat equation with a time-dependent exponent $s(t)$, and a two-dimensional problem, observing spectral convergence in the spatial dimension for sufficiently smooth data.
- Gabriel Acosta and Juan Pablo Borthagaray “A Fractional Laplace Equation: Regularity of Solutions and Finite Element Approximations” In SIAM Journal on Numerical Analysis 55.2 Society for Industrial & Applied Mathematics (SIAM), 2017, pp. 472–495 DOI: 10.1137/15m1033952
- Robert A Adams and John JF Fournier “Sobolev spaces” Elsevier, 2003
- “Frames and numerical approximation” In SIAM Review 61.3 SIAM, 2019, pp. 443–473 DOI: 10.1137/17M1114697
- “Frames and numerical approximation II: generalized sampling” In Journal of Fourier Analysis and Applications 26.6 Springer, 2020, pp. 1–34 DOI: 10.1007/s00041-020-09796-w
- “Towards an Efficient Finite Element Method for the Integral Fractional Laplacian on Polygonal Domains” In Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan Springer International Publishing, 2018, pp. 17–57 DOI: 10.1007/978-3-319-72456-0˙2
- “Spectral approximation of fractional PDEs in image processing and phase field modeling” In Computational Methods in Applied Mathematics 17.4 De Gruyter, 2017, pp. 661–678 DOI: 10.1515/cmam-2017-0039
- “A Finite-Volume Scheme for Fractional Diffusion on Bounded Domains”, 2023 arXiv:2309.08283 [math.NA]
- Gregory R Baker, Xiao Li and Anne C Morlet “Analytic structure of two 1D-transport equations with nonlocal fluxes” In Physica D: Nonlinear Phenomena 91.4 Elsevier, 1996, pp. 349–375 DOI: 10.1016/0167-2789(95)00271-5
- David A Benson, Stephen W Wheatcraft and Mark M Meerschaert “Application of a fractional advection-dispersion equation” In Water Resources Research 36.6 Wiley Online Library, 2000, pp. 1403–1412 DOI: 10.1029/2000WR900031
- “Julia: A fresh approach to numerical computing” In SIAM Review 59.1 SIAM, 2017, pp. 65–98 DOI: 10.1137/141000671
- “Numerical methods for fractional diffusion” In Computing and Visualization in Science 19.5 Springer, 2018, pp. 19–46 DOI: 10.1007/s00791-018-0289-y
- “Numerical methods for fractional diffusion” In Computing and Visualization in Science 19.5-6 Springer ScienceBusiness Media LLC, 2018, pp. 19–46 DOI: 10.1007/s00791-018-0289-y
- “The one-dimensional Keller-Segel model with fractional diffusion of cells” In Nonlinearity 23.4, 2010, pp. 923–935 DOI: 10.1088/0951-7715/23/4/009
- “Regularity of solutions of the fractional porous medium flow with exponent 1/2” In St. Petersburg Mathematical Journal 27.3, 2016, pp. 437–460 DOI: 10.1090/spmj/1397
- “The fractional viscoelastic response of human breast tissue cells” In Physical Biology 12.4 IOP Publishing, 2015, pp. 046001 DOI: 10.1088/1478-3975/12/4/046001
- Jorge Cayama, Carlota M Cuesta and Francisco Hoz “Numerical approximation of the fractional Laplacian on ℝℝ\mathbb{R}blackboard_R using orthogonal families” In Applied Numerical Mathematics 158 Elsevier, 2020, pp. 164–193 DOI: 10.1016/j.apnum.2020.07.024
- “Finite time singularities in a 1D model of the quasi-geostrophic equation” In Advances in Mathematics 194.1 Elsevier, 2005, pp. 203–223 DOI: 10.1016/j.aim.2004.06.004
- Sheng Chen, Jie Shen and Li-Lian Wang “Laguerre functions and their applications to tempered fractional differential equations on infinite intervals” In Journal of Scientific Computing 74.3 Springer, 2018, pp. 1286–1313 DOI: 10.1007/s10915-017-0495-7
- “ClassicalOrthogonalPolynomials.jl”, 2023 URL: https://github.com/JuliaApproximation/ClassicalOrthogonalPolynomials.jl
- “The AZ algorithm for least squares systems with a known incomplete generalized inverse” In SIAM Journal on Matrix Analysis and Applications 41.3 SIAM, 2020, pp. 1237–1259 DOI: 10.1137/19M1306385
- Antonio Córdoba, Diego Córdoba and Marco A Fontelos “Integral inequalities for the Hilbert transform applied to a nonlocal transport equation” In Journal de Mathématiques Pures et Appliquées 86.6 Elsevier, 2006, pp. 529–540 DOI: 10.1016/j.matpur.2006.08.002
- “Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions” In SIAM Journal on Numerical Analysis 56.3, 2018, pp. 1243–1272 DOI: 10.1137/17M1128010
- “Numerical methods for nonlocal and fractional models” In Acta Numerica 29 Cambridge University Press, 2020, pp. 1–124 DOI: 10.1017/S096249292000001X
- Eleonora Di Nezza, Giampiero Palatucci and Enrico Valdinoci “Hitchhiker’s guide to the fractional Sobolev spaces” In Bulletin des Sciences Mathématiques 136.5 Elsevier, 2012, pp. 521–573 DOI: 10.1016/j.bulsci.2011.12.004
- Qiang Du “Nonlocal Modeling, Analysis, and Computation” SIAM, 2019 DOI: 10.1137/1.9781611975628
- Carlos Escudero “The fractional Keller-Segel model” In Nonlinearity 19.12, 2006, pp. 2909–2918 DOI: 10.1088/0951-7715/19/12/010
- Lawrence C Evans “Partial Differential Equations” American Mathematical Society, 2010
- István Faragó “Note on the convergence of the implicit Euler method” In Numerical Analysis and its Applications: 5th International Conference, NAA 2012, Lozenetz, Bulgaria, June 15-20, 2012, Revised Selected Papers 5, 2013, pp. 1–11 Springer DOI: 10.1007/978-3-642-41515-9˙1
- “FractionalFrames.jl”, 2024 URL: https://github.com/ioannisPApapadopoulos/FractionalFrames.jl
- Walter Gautschi “Minimal solutions of three-term recurrence relations and orthogonal polynomials” In Mathematics of Computation 36.154, 1981, pp. 547–554 DOI: 10.1090/S0025-5718-1981-0606512-6
- Walter Gautschi “Orthogonal polynomials: computation and approximation” Oxford University Press, 2004 DOI: 10.1093/oso/9780198506720.001.0001
- Timon S. Gutleb and Ioannis P. A. Papadopoulos “Explicit fractional Laplacians and Riesz potentials of classical functions”, 2023 arXiv:2311.10896 [math.NA]
- Nathan Halko, Per-Gunnar Martinsson and Joel A Tropp “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions” In SIAM Review 53.2 SIAM, 2011, pp. 217–288 DOI: 10.1137/090771806
- “Dispersive transport of ions in column experiments: An explanation of long-tailed profiles” In Water Resources Research 34.5 Wiley Online Library, 1998, pp. 1027–1033 DOI: 10.1029/98WR00214
- “Numerical Methods for the Fractional Laplacian: A Finite Difference-Quadrature Approach” In SIAM Journal on Numerical Analysis 52.6, 2014, pp. 3056–3084 DOI: 10.1137/140954040
- “HypergeometricFunctions.jl”, 2023 URL: https://github.com/JuliaMath/HypergeometricFunctions.jl
- Frederick W. King “Hilbert Transforms: Volume 1” 1, Encyclopedia of Mathematics and its Applications Cambridge University Press, 2009 DOI: 10.1017/CBO9780511721458
- Mateusz Kwaśnicki “Ten equivalent definitions of the fractional Laplace operator” In Fractional Calculus and Applied Analysis 20.1 De Gruyter, 2017, pp. 7–51 DOI: 10.1515/fca-2017-0002
- “Fractional Keller-Segel equation: global well-posedness and finite time blow-up” In Communications in Mathematical Sciences 17.8, 2019, pp. 2055–2087 DOI: 10.4310/CMS.2019.v17.n8.a1
- “Finite-time singularities of an aggregation equation in ℝnsuperscriptℝ𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT with fractional dissipation” In Communications in Mathematical Physics 287.2, 2009, pp. 687–703 DOI: 10.1007/s00220-008-0669-0
- Huiyuan Li, Ruiqing Liu and Li-Lian Wang “Efficient Hermite spectral-Galerkin methods for nonlocal diffusion equations in unbounded domains”, 2021 URL: https://personal.ntu.edu.sg/lilian/HermiteNonlocal-Submitted.pdf
- “What is the fractional Laplacian? A comparative review with new results” In Journal of Computational Physics 404 Elsevier BV, 2020, pp. 109009 DOI: 10.1016/j.jcp.2019.109009
- “Hermite spectral methods for fractional PDEs in unbounded domains” In SIAM Journal on Scientific Computing 39.5 SIAM, 2017, pp. A1928–A1950 DOI: 10.1137/16M1097109
- “Randomized algorithms for Tikhonov regularization in linear least squares”, 2022 arXiv:2203.07329 [math.NA]
- “Are sketch-and-precondition least squares solvers numerically stable?”, 2023 arXiv:2302.07202 [math.NA]
- Ricardo H. Nochetto, Enrique Otárola and Abner J. Salgado “A PDE approach to fractional diffusion in general domains: a priori error analysis” In Foundations of Computational Mathematics 15.3, 2015, pp. 733–791 DOI: 10.1007/s10208-014-9208-x
- “NIST Digital Library of Mathematical Functions”, http://dlmf.nist.gov/, Release 1.1.4 of 2022-01-15 URL: http://dlmf.nist.gov/
- “Orthogonal structure on a wedge and on the boundary of a square” In Foundations of Computational Mathematics 19 Springer, 2019, pp. 561–589 DOI: 10.1007/s10208-018-9393-0
- Ioannis P. A. Papadopoulos “ioannisPApapadopoulos/FractionalFrames.jl” Zenodo, 2024 DOI: 10.5281/zenodo.10710911
- Ioannis P. A. Papadopoulos and Sheehan Olver “A sparse spectral method for fractional differential equations in one-spacial dimension” arXiv:2210.08247 [math.NA]
- Sansit Patnaik, John P Hollkamp and Fabio Semperlotti “Applications of variable-order fractional operators: a review” In Proceedings of the Royal Society A 476.2234 The Royal Society Publishing, 2020, pp. 20190498 DOI: 10.1098/rspa.2019.0498
- “Fast Fourier-like mapped Chebyshev spectral-Galerkin methods for PDEs with integral fractional Laplacian in unbounded domains” In SIAM Journal on Numerical Analysis 58.5 SIAM, 2020, pp. 2435–2464 DOI: 10.1137/19M128377X
- Gilbert W Stewart “Afternotes Goes to Graduates School” SIAM, 1998 DOI: 10.1137/1.9781611971422
- “Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains” In SIAM Journal on Scientific Computing 42.2 SIAM, 2020, pp. A585–A611 DOI: 10.1137/19M1244299
- Tao Tang, Huifang Yuan and Tao Zhou “Hermite spectral collocation methods for fractional PDEs in unbounded domains” In Communications in Computational Physics 24.4, 2018, pp. 1143–1168 DOI: 10.4208/cicp.2018.hh80.12
- Félix Teso “Finite difference method for a fractional porous medium equation” In Calcolo 51.4, 2014, pp. 615–638
- Bradley E Treeby and Ben T Cox “Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian” In The Journal of the Acoustical Society of America 127.5 Acoustical Society of America, 2010, pp. 2741–2748 DOI: 10.1121/1.3377056
- Juan Luis Vázquez “Asymptotic behaviour for the fractional heat equation in the Euclidean space” In Complex Variables and Elliptic Equations 63.7-8 Taylor & Francis, 2018, pp. 1216–1231 DOI: 10.1080/17476933.2017.1393807
- K Yosida “Functional Analysis” Springer, 1980 DOI: 10.1007/978-3-642-61859-8