Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
11 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Towards Perturbation-Induced Static Pivoting on GPU-Based Linear Solvers (2311.11833v2)

Published 20 Nov 2023 in eess.SY and cs.SY

Abstract: Linear system solving is a key tool for computational power system studies, e.g., optimal power flow, transmission switching, or unit commitment. CPU-based linear system solver speeds, however, have saturated in recent years. Emerging research shows that GPU-based linear system solvers are beginning to achieve notable speedup over CPU-based alternatives in some applications. Due to the architecture of GPU memory access, numerical pivoting represents the new bottleneck which prevents GPU-based solvers from running even faster. Accordingly, this paper proposes a matrix perturbation-based method to induce static pivoting. Using this approach, a series of perturbed, well-conditioned, pivot-free linear systems are solved in parallel on GPUs. Matrix expansion routines are then used to linearly combine the results, and the true solution is recovered to an arbitrarily high degree of theoretical accuracy. We showcase the validity of our approach on distributed-slack AC power flow solve iterations associated with the PGLib 300-bus test case.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. T. A. Davis, “Umfpack user guide,” Website: http://www. cise. ufl. edu/research/sparse/umfpack/(1994–2009), 1995.
  2. X. S. Li, “An overview of superlu: Algorithms, implementation, and user interface,” ACM Trans. Math. Softw., vol. 31, no. 3, pp. 302–325, 2005.
  3. T. A. Davis and E. Palamadai Natarajan, “Algorithm 907: Klu, a direct sparse solver for circuit simulation problems,” ACM Trans. Math. Softw., vol. 37, no. 3, pp. 1–17, 2010.
  4. I. S. Duff, “Ma57—a code for the solution of sparse symmetric definite and indefinite systems,” ACM Trans. Math. Softw., vol. 30, no. 2, pp. 118–144, 2004.
  5. Boston, MA: Springer US, 2011.
  6. P. Ghysels, X. S. Li, F.-H. Rouet, S. Williams, and A. Napov, “An efficient multicore implementation of a novel hss-structured multifrontal solver using randomized sampling,” SIAM Journal on Scientific Computing, vol. 38, no. 5, pp. S358–S384, 2016.
  7. K. Świrydowicz, E. Darve, W. Jones, J. Maack, S. Regev, M. A. Saunders, S. J. Thomas, and S. Peleš, “Linear solvers for power grid optimization problems: A review of gpu-accelerated linear solvers,” Parallel Computing, vol. 111, p. 102870, 2022.
  8. “cusolver library.” https://docs.nvidia.com/cuda/pdf/CUSOLVER_Library.pdf.
  9. S. Shin, F. Pacaud, and M. Anitescu, “Accelerating optimal power flow with gpus: Simd abstraction of nonlinear programs and condensed-space interior-point methods,” arXiv preprint arXiv:2307.16830, 2023.
  10. K. Świrydowicz, N. Koukpaizan, T. Ribizel, F. Göbel, S. Abhyankar, H. Anzt, and S. Peleš, “Gpu-resident sparse direct linear solvers for alternating current optimal power flow analysis,” International Journal of Electrical Power & Energy Systems, vol. 155, p. 109517, 2024.
  11. H. Anzt, T. Cojean, G. Flegar, F. Göbel, T. Grützmacher, P. Nayak, T. Ribizel, Y. Tsai, and E. S. Quintana-Ortí, “Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing,” ACM Trans. Math. Softw., vol. 48, pp. 1–33, Mar. 2022.
  12. I. S. Duff and S. Pralet, “Towards stable mixed pivoting strategies for the sequential and parallel solution of sparse symmetric indefinite systems,” SIAM J. Mat. Anal. App., vol. 29, no. 3, pp. 1007–1024, 2007.
  13. X. S. Li and J. W. Demmel, “Superlu_dist: A scalable distributed-memory sparse direct solver for unsymmetric linear systems,” ACM Trans. Math. Softw., vol. 29, p. 110–140, jun 2003.
  14. T. El-Moselhy and L. Daniel, “Variation-aware stochastic extraction with large parameter dimensionality: Review and comparison of state of the art intrusive and non-intrusive techniques,” in 2011 12th International Symposium on Quality Electronic Design, pp. 1–10, IEEE, 2011.
  15. Cambridge Univ. Press, 1990.
  16. S. V. Dhople, Y. C. Chen, A. Al-Digs, and A. D. Domínguez-García, “Reexamining the distributed slack bus,” IEEE Transactions on Power Systems, vol. 35, no. 6, pp. 4870–4879, 2020.

Summary

We haven't generated a summary for this paper yet.