A causal intervention framework for synthesizing mobility data and evaluating predictive neural networks (2311.11749v3)
Abstract: Deep neural networks are increasingly utilized in mobility prediction tasks, yet their intricate internal workings pose challenges for interpretability, especially in comprehending how various aspects of mobility behavior affect predictions. This study introduces a causal intervention framework to assess the impact of mobility-related factors on neural networks designed for next location prediction -- a task focusing on predicting the immediate next location of an individual. To achieve this, we employ individual mobility models to synthesize location visit sequences and control behavior dynamics by intervening in their data generation process. We evaluate the interventional location sequences using mobility metrics and input them into well-trained networks to analyze performance variations. The results demonstrate the effectiveness in producing location sequences with distinct mobility behaviors, thereby facilitating the simulation of diverse yet realistic spatial and temporal changes. These changes result in performance fluctuations in next location prediction networks, revealing impacts of critical mobility behavior factors, including sequential patterns in location transitions, proclivity for exploring new locations, and preferences in location choices at population and individual levels. The gained insights hold value for the real-world application of mobility prediction networks, and the framework is expected to promote the use of causal inference to enhance the interpretability and robustness of neural networks in mobility applications.
- Multi-scale spatio-temporal analysis of human mobility. PLOS ONE, 12(2):e0171686, 2017. doi:10.1371/journal.pone.0171686.
- Evidence for a conserved quantity in human mobility. Nature Human Behaviour, 2(7):485–491, 2018. doi:10.1038/s41562-018-0364-x.
- The scales of human mobility. Nature, 587(7834):402–407, 2020. ISSN 1476-4687. doi:10.1038/s41586-020-2909-1.
- powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions. PLoS ONE, 9(1):e85777, 2014. doi:10.1371/journal.pone.0085777.
- K. W. Axhausen and T. Gärling. Activity‐based approaches to travel analysis: conceptual frameworks, models, and research problems. Transport Reviews, 12(4):323–341, 1992. doi:10.1080/01441649208716826.
- Human mobility: Models and applications. Physics Reports, 734:1–74, 2018.
- Selecting Individual and Population Models for Predicting Human Mobility. IEEE Transactions on Mobile Computing, 17(10):2408–2422, 2018. doi:10.1109/TMC.2018.2797937.
- The scaling laws of human travel. Nature, 439(7075):462–465, 2006. doi:10.1038/nature04292.
- Optimizing electric vehicle charging schedules based on probabilistic forecast of individual mobility. AGILE: GIScience Series, 3:3, 2022. doi:10.5194/agile-giss-3-3-2022.
- Characterizing preferred motif choices and distance impacts. PLOS ONE, 14(4):e0215242, 2019. doi:10.1371/journal.pone.0215242.
- The promises of big data and small data for travel behavior (aka human mobility) analysis. Transportation Research Part C: Emerging Technologies, 68:285–299, 2016. doi:10.1016/j.trc.2016.04.005.
- Understanding individual human mobility patterns. Nature, 453(7196):779–782, 2008. doi:10.1038/nature06958.
- Deep Learning From Trajectory Data: a Review of Deep Neural Networks and the Trajectory Data Representations to Train Them. In Proceedings of the Workshop on Big Mobility Data Analytics (BMDA) co-located with EDBT/ICDT 2023 Joint Conference, 2023.
- What is the Human Mobility in a New City: Transfer Mobility Knowledge Across Cities. In Proceedings of the 2020 World Wide Web Conference on World Wide Web (WWW ’20), pages 1355–1365, New York, NY, USA, 2020. ACM Press. doi:10.1145/3366423.3380210.
- The impact of COVID-19 on mobility choices in Switzerland. Transportation Research Part A: Policy and Practice, 169:103582, 2023. doi:10.1016/j.tra.2023.103582.
- S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735–1780, 1997. doi:10.1162/neco.1997.9.8.1735.
- A clustering-based framework for individual travel behaviour change detection. In 11th International Conference on Geographic Information Science - Part II (GIScience ’21), volume 208, page 4, 2021. doi:10.4230/LIPIcs.GIScience.2021.II.4.
- How do you go where? improving next location prediction by learning travel mode information using transformers. In Proceedings of the 30th International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’22), 2022. doi:10.1145/3557915.3560996.
- Conserved quantities in human mobility: From locations to trips. Transportation Research Part C: Emerging Technologies, 146:103979, 2023a. doi:10.1016/j.trc.2022.103979.
- Context-aware multi-head self-attentional neural network model for next location prediction. Transportation Research Part C: Emerging Technologies, 156:104315, 2023b. doi:10.1016/j.trc.2023.104315.
- A survey of safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack and defence, and interpretability. Computer Science Review, 37:100270, 2020.
- Rethinking the regularity in mobility patterns of personal vehicle drivers: A multi-city comparison using a feature engineering approach. Transactions in GIS, 27(3):663–685, 2023. doi:10.1111/tgis.13043.
- DeepUrbanMomentum: An Online Deep-Learning System for Short-Term Urban Mobility Prediction. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), 2018. doi:10.1609/aaai.v32i1.11338.
- D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In 3rd International Conference on Learning Representations (ICLR ’15), 2015.
- Machine learning applications in activity-travel behaviour research: a review. Transport Reviews, 40(3):288–311, 2020. doi:10.1080/01441647.2019.1704307.
- V. Kulkarni and B. Garbinato. 20 years of mobility modeling & prediction: Trends, shortcomings & perspectives. In Proceedings of the 27th International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’19), pages 492–495, 2019.
- Big Data in Earth system science and progress towards a digital twin. Nature Reviews Earth & Environment, 4(5):319–332, 2023. doi:10.1038/s43017-023-00409-w.
- Approaching the Limit of Predictability in Human Mobility. Scientific Reports, 3(1):2923, 2013. doi:10.1038/srep02923.
- A Survey on Deep Learning for Human Mobility. ACM Computing Surveys, 55:7:1–7:44, 2021. doi:10.1145/3485125.
- Z. Ma and P. Zhang. Individual mobility prediction review: Data, problem, method and application. Multimodal Transportation, 1(1):100002, 2022. doi:10.1016/j.multra.2022.100002.
- Deep Learning for Road Traffic Forecasting: Does it Make a Difference? IEEE Transactions on Intelligent Transportation Systems, 23(7):6164–6188, 2022. doi:10.1109/tits.2021.3083957.
- Generative interventions for causal learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR ’21), pages 3947–3956, 2021.
- Begleitstudie SBB Green Class - Abschlussbericht. Arbeitsberichte Verkehrs- und Raumplanung, 1439, 2019. doi:10.3929/ethz-b-000353337.
- Trackintel: An open-source python library for human mobility analysis. Computers, Environment and Urban Systems, 101:101938, 2023a. doi:10.1016/j.compenvurbsys.2023.101938.
- Graph-based mobility profiling. Computers, Environment and Urban Systems, 100:101910, 2023b. doi:10.1016/j.compenvurbsys.2022.101910.
- Learning representations for image-based profiling of perturbations. Nature Communications, 15(1):1594, 2024. doi:10.1038/s41467-024-45999-1.
- Returners and explorers dichotomy in human mobility. Nature Communications, 6(1):8166, 2015. doi:10.1038/ncomms9166.
- Future directions in human mobility science. Nature Computational Science, 3(7):588–600, 2023. doi:10.1038/s43588-023-00469-4.
- Deep structural causal models for tractable counterfactual inference. In Proceedings of the 34th International Conference on Neural Information Processing Systems (NIPS ’20), volume 33, pages 857–869, 2020.
- J. Pearl and D. Mackenzie. The Book of Why: The New Science of Cause and Effect. Basic Books, Inc., 1st edition, 2018. ISBN 978-0-465-09760-9.
- Counterfactual reasoning in space and time: Integrating graphical causal models in computational movement analysis. Transactions in GIS, 2023. doi:10.1111/tgis.13100.
- Residential relocation and travel behavior change: Investigating the effects of changes in the built environment, activity space dispersion, car and bike ownership, and travel attitudes. Transportation Research Part A: Policy and Practice, 147:28–48, 2021. doi:10.1016/j.tra.2021.02.016.
- Causal inference for time series. Nature Reviews Earth & Environment, 4(7):487–505, 2023. doi:10.1038/s43017-023-00431-y.
- COVID-19 is linked to changes in the time–space dimension of human mobility. Nature Human Behaviour, pages 1–11, 2023. doi:10.1038/s41562-023-01660-3.
- Unravelling daily human mobility motifs. Journal of The Royal Society Interface, 10(84):20130246, 2013. doi:10.1098/rsif.2013.0246.
- Toward Causal Representation Learning. Proceedings of the IEEE, 109(5):612–634, 2021. doi:10.1109/JPROC.2021.3058954.
- S. Schönfelder and K. W. Axhausen. Urban rhythms and travel behaviour: spatial and temporal phenomena of daily travel. Routledge, 2016.
- R. Silva. Observational-interventional priors for dose-response learning. In Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS ’16), volume 29, pages 1569–1577, 2016.
- Analyzing movement predictability using human attributes and behavioral patterns. Computers, Environment and Urban Systems, 87:101596, 2021. doi:10.1016/j.compenvurbsys.2021.101596.
- Modelling the scaling properties of human mobility. Nature Physics, 6(10):818–823, 2010a. doi:10.1038/nphys1760.
- Limits of Predictability in Human Mobility. Science, 327(5968):1018–1021, 2010b. doi:10.1126/science.1177170.
- J. Sun and J. Kim. Joint prediction of next location and travel time from urban vehicle trajectories using long short-term memory neural networks. Transportation Research Part C: Emerging Technologies, 128:103114, 2021. doi:10.1016/j.trc.2021.103114.
- Repetitions in individual daily activity-travel-location patterns: a study using the Herfindahl-Hirschman Index. Transportation, 41(5):995–1011, 2014. doi:10.1007/s11116-014-9519-4.
- Delay-Minimization Routing for Heterogeneous VANETs With Machine Learning Based Mobility Prediction. IEEE Transactions on Vehicular Technology, 68(4):3967–3979, 2019. doi:10.1109/TVT.2019.2899627.
- Deciphering Predictability Limits in Human Mobility. In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’19), pages 52–61, 2019. doi:10.1145/3347146.3359093.
- On estimating the predictability of human mobility: the role of routine. EPJ Data Science, 10(1):1–30, 2021. doi:10.1140/epjds/s13688-021-00304-8.
- Eliminating biasing signals in lung cancer images for prognosis predictions with deep learning. npj Digital Medicine, 2(1):1–6, 2019.
- Attention is All you Need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS ’17), volume 30, pages 5998–6008, 2017.
- Predicting visit frequencies to new places. In 12th International Conference on Geographic Information Science (GIScience ’23), volume 277, pages 84:1–84:6, 2023a. doi:10.4230/LIPIcs.GIScience.2023.84.
- Influence of tracking duration on the privacy of individual mobility graphs. Journal of Location Based Services, 0(0):1–19, 2023b. doi:10.1080/17489725.2023.2239190.
- Vision paper: causal inference for interpretable and robust machine learning in mobility analysis. In Proceedings of the 30th International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’22), pages 1–4, 2022. doi:10.1145/3557915.3561473.
- Human mobility and socioeconomic status: Analysis of Singapore and Boston. Computers, Environment and Urban Systems, 72:51–67, 2018a. doi:10.1016/j.compenvurbsys.2018.04.001.
- Planning for electric vehicle needs by coupling charging profiles with urban mobility. Nature Energy, 3(6):484–493, 2018b. doi:10.1038/s41560-018-0136-x.
- Understanding the movement predictability of international travelers using a nationwide mobile phone dataset collected in South Korea. Computers, Environment and Urban Systems, 92:101753, 2022. doi:10.1016/j.compenvurbsys.2021.101753.
- Universal model of individual and population mobility on diverse spatial scales. Nature Communications, 8(1):1639, 2017. doi:10.1038/s41467-017-01892-8.
- Deep Learning on Traffic Prediction: Methods, Analysis, and Future Directions. IEEE Transactions on Intelligent Transportation Systems, 23(6):4927–4943, 2022. doi:10.1109/tits.2021.3054840.
- Characteristics of human mobility patterns revealed by high-frequency cell-phone position data. EPJ Data Science, 10(1), 2021. doi:10.1140/epjds/s13688-021-00261-2.
- Explaining the power-law distribution of human mobility through transportation modality decomposition. Scientific Reports, 5(1):9136, 2015. doi:10.1038/srep09136.
- Individual mobility prediction using transit smart card data. Transportation Research Part C: Emerging Technologies, 89:19–34, 2018. doi:10.1016/j.trc.2018.01.022.