Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Congruency-Constrained Matroid Base (2311.11737v2)

Published 20 Nov 2023 in math.CO, cs.DM, cs.DS, and math.OC

Abstract: Consider a matroid where all elements are labeled with an element in $\mathbb{Z}$. We are interested in finding a base where the sum of the labels is congruent to $g \pmod m$. We show that this problem can be solved in $\tilde{O}(2{4m} n r{5/6})$ time for a matroid with $n$ elements and rank $r$, when $m$ is either the product of two primes or a prime power. The algorithm can be generalized to all moduli and, in fact, to all abelian groups if a classic additive combinatorics conjecture by Schrijver and Seymour holds true. We also discuss the optimization version of the problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. A strongly polynomial algorithm for bimodular integer linear programming. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, page 1206–1219, New York, NY, USA, 2017. Association for Computing Machinery.
  2. PC Baayen. Een combinatorisch probleem voor eindige abelse groepen. In Math. Centrum Syllabus 5, Colloquium Discrete Wiskunde Caput, volume 3, 1968.
  3. Exact arborescences, matchings and cycles. 16(2):91–99.
  4. Richard Bellman. Notes on the theory of dynamic programming iv - maximization over discrete sets. Naval Research Logistics Quarterly, 3(1-2):67–70, 1956.
  5. Joakim Blikstad. Breaking 𝑶⁢(𝒏⁢𝒓)𝑶𝒏𝒓O(nr)bold_italic_O bold_( bold_italic_n bold_italic_r bold_) for Matroid Intersection. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), volume 198 of Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1–31:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
  6. Constraint Satisfaction Problems with Global Modular Constraints: Algorithms and Hardness via Polynomial Representations. SIAM Journal on Computing, 51(3):577–626, June 2022.
  7. Richard A. Brualdi. Comments on bases in dependence structures. Bulletin of the Australian Mathematical Society, 1(2):161–167, 1969.
  8. Multi-constrained matroidal knapsack problems. Mathematical Programming, 45(1):211–231, August 1989.
  9. The matroidal knapsack: A class of (often) well-solvable problems. Operations Research Letters, 3(3):157–162, 1984.
  10. Random pseudo-polynomial algorithms for exact matroid problems. 13(2):258–273.
  11. H Davenport. Proceedings of the midwestern conference on group theory and number theory. Ohio State University, 1966.
  12. A generalization of Kneser’s addition theorem. Advances in Mathematics, 220(5):1531–1548, 2009.
  13. Tight lower bounds for weighted matroid problems, 2023.
  14. Exact Matching: Correct Parity and FPT Parameterized by Independence Number. In Satoru Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms and Computation (ISAAC 2023), volume 283 of Leibniz International Proceedings in Informatics (LIPIcs), pages 28:1–28:18, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
  15. Problems on group-labeled matroid bases, 2024.
  16. Aubrey W Ingleton. Transversal matroids and related structures. Higher Combinatorics: Proceedings of the NATO Advanced Study Institute held in Berlin (West Germany), September 1–10, 1976, pages 117–131, 1977.
  17. Matroid enumeration for incidence geometry. 47(1):17–43.
  18. Matroids with nine elements. Journal of Combinatorial Theory, Series B, 98(2):415–431, 2008.
  19. Matching is as easy as matrix inversion. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87, page 345–354, New York, NY, USA, 1987. Association for Computing Machinery.
  20. Advances on strictly -Modular IPs. In Proceedings of the 24th Conference on Integer Programming and Combinatorial Optimization (IPCO ’23), pages 393–407, 2023.
  21. Congruency-Constrained TU Problems Beyond the Bimodular Case, pages 2743–2790.
  22. Submodular Minimization Under Congruency Constraints. Combinatorica, 39(6):1351–1386, December 2019.
  23. John E Olson. A combinatorial problem on finite abelian groups, I. Journal of Number Theory, 1(1):8–10, 1969.
  24. The complexity of restricted spanning tree problems. J. ACM, 29(2):285–309, apr 1982.
  25. Spanning trees of different weights. In Polyhedral Combinatorics, page 281, 1990.
  26. P. van Emde Boas and D. Kruyswijk. A Combinatorial Problem on Finite Abelian Groups III. Mathematisch Centrum, Amsterdam. Afdeling Zuivers Wiskunde. Stichting Mathematisch Centrum, 1969.
  27. Webb, Kerri. Counting Bases. PhD thesis, University of Waterloo, 2004.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com