Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Taking Complete Finite Prefixes To High Level, Symbolically (2311.11443v4)

Published 19 Nov 2023 in cs.LO and cs.FL

Abstract: Unfoldings are a well known partial-order semantics of P/T Petri nets that can be applied to various model checking or verification problems. For high-level Petri nets, the so-called symbolic unfolding generalizes this notion. A complete finite prefix of a P/T Petri net's unfolding contains all information to verify, e.g., reachability of markings. We unite these two concepts and define complete finite prefixes of the symbolic unfolding of high-level Petri nets. For a class of safe high-level Petri nets, we generalize the well-known algorithm by Esparza et al. for constructing small such prefixes. We evaluate this extended algorithm through a prototype implementation on four novel benchmark families. Additionally, we identify a more general class of nets with infinitely many reachable markings, for which an approach with an adapted cut-off criterion extends the complete prefix methodology, in the sense that the original algorithm cannot be applied to the P/T net represented by a high-level net.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. Taking Complete Finite Prefixes to High Level, Symbolically. In: Proc. PETRI NETS 2023, LNCS 13929. Springer, 2023 pp. 123–144. 10.1007/978-3-031-33620-1_7.
  2. Reisig W. Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case Studies. Springer, 2013. ISBN 978-3-642-33277-7. 10.1007/978-3-642-33278-4.
  3. Jensen K. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical Use - Volume 1, Second Edition. Monographs in Theoretical Computer Science. An EATCS Series. Springer, 1996. ISBN 978-3-642-08243-6. 10.1007/978-3-662-03241-1.
  4. Chatain T, Fabre E. Factorization Properties of Symbolic Unfoldings of Colored Petri Nets. In: Lilius J, Penczek W (eds.), Proc. PETRI NETS 2010, LNCS 6128. Springer, 2010 pp. 165–184. 10.1007/978-3-642-13675-7_11.
  5. Petri Nets, Event Structures and Domains, Part I. Theor. Comput. Sci., 1981. 13:85–108. 10.1016/0304-3975(81)90112-2.
  6. Engelfriet J. Branching Processes of Petri Nets. Acta Informatica, 1991. 28(6):575–591. 10.1007/BF01463946.
  7. McMillan KL. A Technique of State Space Search Based on Unfolding. Formal Methods Syst. Des., 1995. 6(1):45–65. 10.1007/BF01384314.
  8. An Improvement of McMillan’s Unfolding Algorithm. Formal Methods Syst. Des., 2002. 20(3):285–310. 10.1023/A:1014746130920.
  9. Khomenko V, Koutny M. Branching Processes of High-Level Petri Nets. In: Proc. TACAS 2003, LNCS 2619. Springer, 2003 pp. 458–472. 10.1007/3-540-36577-X_34.
  10. High-Level Net Processes. In: Formal and Natural Computing, LNCS 2300. Springer, 2002 pp. 191–219. 10.1007/3-540-45711-9_12.
  11. Chatain T, Jard C. Symbolic Diagnosis of Partially Observable Concurrent Systems. In: Proc. FORTE 2004, LNCS 3235. Springer, 2004 pp. 326–342. 10.1007/978-3-540-30232-2_21.
  12. Chatain T, Jard C. Complete Finite Prefixes of Symbolic Unfoldings of Safe Time Petri Nets. In: Proc. ICATPN 2006, LNCS 4024. Springer, 2006 pp. 125–145. 10.1007/11767589_8.
  13. Chatain T. Symbolic Unfoldings of High-Level Petri Nets and Application to Supervision of Distributed Systems. Ph.D. thesis, Universit é de Rennes, 2006. URL https://www.sudoc.fr/246936924.
  14. Presburger M. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Proc. Comptes-rendus du I Congrés des Mathématiciens des Pays Slaves, Varsovie 1929. 1930 pp. 92–101.
  15. Unfoldings of Unbounded Petri Nets. In: Proc. CAV 2000, LNCS 1855. Springer, 2000 pp. 495–507. 10.1007/10722167_37.
  16. Finite Unfoldings of Unbounded Petri Nets. In: Proc. PETRI NETS 2004, LNCS 3099. Springer, 2004 pp. 157–176. 10.1007/978-3-540-27793-4_10.
  17. Unfolding Concurrent Well-Structured Transition Systems. In: Proc. TACAS 2007, LNCS 4424. Springer, 2007 pp. 706–720. 10.1007/978-3-540-71209-1_55.
  18. Schmidt K. Parameterized Reachability Trees for Algebraic Petri Nets. In: Proc. PETRI NETS 1995, LNCS 935. Springer, 1995 pp. 392–411. 10.1007/3-540-60029-9_51.
  19. Schwoon S. Mole. URL http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/.
  20. Rodríguez C. Cunf. URL https://github.com/cesaro/cunf.
  21. Rodríguez C, Schwoon S. Cunf: A Tool for Unfolding and Verifying Petri Nets with Read Arcs. In: Proc. ATVA 2013, volume 8172 of LNCS. Springer, 2013 pp. 492–495. 10.1007/978-3-319-02444-8_42.
  22. Khomenko V. Punf. URL homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/.
  23. Panneke L. ColorUnfolder. URL https://github.com/Selebrator/ColorUnfolder.
  24. cvc5: A Versatile and Industrial-Strength SMT Solver. In: Fisman D, Rosu G (eds.), Proc. TACAS 2022, LNCS 13243. Springer, 2022 pp. 415–442. 10.1007/978-3-030-99524-9_24.
  25. Atwood ME, Polson PG. A process model for water jug problems. Cognitive Psychology, 1976. 8(2):191–216. https://doi.org/10.1016/0010-0285(76)90023-2.
  26. A process model for Missionaries-Cannibals and other river-crossing problems. Cognitive Psychology, 1977. 9(4):412–440. https://doi.org/10.1016/0010-0285(77)90015-9.
  27. Pressman I, Singmaster D. The jealous husbands and The missionaries and cannibals. The Mathematical Gazette, 1989. 73(464):73–81. 10.2307/3619658.
  28. Knuth DE. The Computer as Master Mind. J. Recreational Mathematics, 1976–77. 9(1):1–6.
  29. Koyama K, Lai TW. An optimal Mastermind Strategy. J. Recreational Mathematics, 1993. 25(4):251–256.
  30. Gieseking M, Olderog E. High-Level Representation of Benchmark Families for Petri Games. In: Model Checking, Synthesis, and Learning, LNCS 13030. Springer, 2021 pp. 115–137. 10.1007/978-3-030-91384-7_7.
  31. Solving high-level Petri games. Acta Informatica, 2020. 57(3-5):591–626. 10.1007/s00236-020-00368-5.
  32. Finkbeiner B. Bounded Synthesis for Petri Games. In: Correct System Design, LNCS 9360. Springer, 2015 pp. 223–237. 10.1007/978-3-319-23506-6_15.
  33. Characterization of Reachable Attractors Using Petri Net Unfoldings. In: Proc. CMSB 2014, LNCS 8859. Springer, 2014 pp. 129–142. 10.1007/978-3-319-12982-2_10.
  34. Avoid One’s Doom: Finding Cliff-Edge Configurations in Petri Nets. In: Proc. GandALF 2022, EPTCS 370. 2022 pp. 178–193. 10.4204/EPTCS.370.12.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com