Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Quantum Embedding: Pushing the Limits of Quantum Supervised Learning (2311.11412v2)

Published 19 Nov 2023 in quant-ph and cs.ET

Abstract: Quantum embedding is a fundamental prerequisite for applying quantum machine learning techniques to classical data, and has substantial impacts on performance outcomes. In this study, we present Neural Quantum Embedding (NQE), a method that efficiently optimizes quantum embedding beyond the limitations of positive and trace-preserving maps by leveraging classical deep learning techniques. NQE enhances the lower bound of the empirical risk, leading to substantial improvements in classification performance. Moreover, NQE improves robustness against noise. To validate the effectiveness of NQE, we conduct experiments on IBM quantum devices for image data classification, resulting in a remarkable accuracy enhancement from 0.52 to 0.96. In addition, numerical analyses highlight that NQE simultaneously improves the trainability and generalization performance of quantum neural networks, as well as of the quantum kernel method.

Citations (9)

Summary

We haven't generated a summary for this paper yet.