Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GeoSAM: Fine-tuning SAM with Multi-Modal Prompts for Mobility Infrastructure Segmentation (2311.11319v3)

Published 19 Nov 2023 in cs.CV and cs.AI

Abstract: In geographical image segmentation, performance is often constrained by the limited availability of training data and a lack of generalizability, particularly for segmenting mobility infrastructure such as roads, sidewalks, and crosswalks. Vision foundation models like the Segment Anything Model (SAM), pre-trained on millions of natural images, have demonstrated impressive zero-shot segmentation performance, providing a potential solution. However, SAM struggles with geographical images, such as aerial and satellite imagery, due to its training being confined to natural images and the narrow features and textures of these objects blending into their surroundings. To address these challenges, we propose Geographical SAM (GeoSAM), a SAM-based framework that fine-tunes SAM with automatically generated multi-modal prompts, combining point prompts from a pre-trained task-specific model as primary visual guidance and text prompts from a LLM as secondary semantic guidance to enhance model comprehension. GeoSAM outperforms existing approaches for mobility infrastructure segmentation in both familiar and completely unseen regions by at least 5\% in mIoU, representing a significant leap in leveraging foundation models to segment mobility infrastructure, including both road and pedestrian infrastructure in geographical images. The source code can be found in this GitHub Repository: https://github.com/rafiibnsultan/GeoSAM.

Citations (6)

Summary

We haven't generated a summary for this paper yet.