Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exotic Symmetry Breaking Properties of Self-Dual Fracton Spin Models (2311.11066v2)

Published 18 Nov 2023 in quant-ph, cond-mat.stat-mech, and cond-mat.str-el

Abstract: Fracton codes host unconventional topological states of matter and are promising for fault-tolerant quantum computation due to their large coding space and strong resilience against decoherence and noise. In this work, we investigate the ground-state properties and phase transitions of two prototypical self-dual fracton spin models -- the tetrahedral Ising model and the fractal Ising model -- which correspond to error-correction procedures for the representative fracton codes of type-I and type-II, the checkerboard code and the Haah's code, respectively, in the error-free limit. They are endowed with exotic symmetry-breaking properties that contrast sharply with the spontaneous breaking of global symmetries and deconfinement transition of gauge theories. To show these unconventional behaviors, which are associated with sub-dimensional symmetries, we construct and analyze the order parameters, correlators, and symmetry generators for both models. Notably, the tetrahedral Ising model acquires an extended semi-local ordering moment, while the fractal Ising model fits into a polynomial ring representation and leads to a fractal order parameter. Numerical studies combined with analytical tools show that both models experience a strong first-order phase transition with an anomalous $L{-(D-1)}$ scaling, despite the fractal symmetry of the latter. Our work provides new understanding of sub-dimensional symmetry breaking and makes an important step for studying quantum-error-correction properties of the checkerboard and Haah's codes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (80)
  1. A.Yu. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of Physics 303, 2 – 30 (2003).
  2. Eric Dennis, Alexei Kitaev, Andrew Landahl,  and John Preskill, “Topological quantum memory,” Journal of Mathematical Physics 43, 4452–4505 (2002).
  3. Chenyang Wang, Jim Harrington,  and John Preskill, “Confinement-higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory,” Annals of Physics 303, 31–58 (2003).
  4. H. Bombin and M. A. Martin-Delgado, “Topological quantum distillation,” Phys. Rev. Lett. 97, 180501 (2006).
  5. Helmut G. Katzgraber, H. Bombin,  and M. A. Martin-Delgado, “Error threshold for color codes and random three-body ising models,” Phys. Rev. Lett. 103, 090501 (2009).
  6. H. Bombin, Ruben S. Andrist, Masayuki Ohzeki, Helmut G. Katzgraber,  and M. A. Martin-Delgado, “Strong resilience of topological codes to depolarization,” Phys. Rev. X 2, 021004 (2012).
  7. Sergey Bravyi and Robert König, “Classification of topologically protected gates for local stabilizer codes,” Phys. Rev. Lett. 110, 170503 (2013).
  8. Earl T. Campbell, Barbara M. Terhal,  and Christophe Vuillot, “Roads towards fault-tolerant universal quantum computation,” Nature 549, 172–179 (2017).
  9. Scott Aaronson and Daniel Gottesman, “Improved simulation of stabilizer circuits,” Phys. Rev. A 70, 052328 (2004).
  10. D. Nigg, M. Müller, E. A. Martinez, P. Schindler, M. Hennrich, T. Monz, M. A. Martin-Delgado,  and R. Blatt, “Quantum computations on a topologically encoded qubit,” Science 345, 302–305 (2014).
  11. Lukas Postler, Sascha Heußen, Ivan Pogorelov, Manuel Rispler, Thomas Feldker, Michael Meth, Christian D. Marciniak, Roman Stricker, Martin Ringbauer, Rainer Blatt, Philipp Schindler, Markus Müller,  and Thomas Monz, “Demonstration of fault-tolerant universal quantum gate operations,” Nature 605, 675–680 (2022).
  12. C Ryan-Anderson, NC Brown, MS Allman, B Arkin, G Asa-Attuah, C Baldwin, J Berg, JG Bohnet, S Braxton, N Burdick, et al., “Implementing fault-tolerant entangling gates on the five-qubit code and the color code,” arXiv:2208.01863  (2022).
  13. K. J. Satzinger, Y.-J Liu, A. Smith, C. Knapp, M. Newman, C. Jones, Z. Chen, C. Quintana, X. Mi, A. Dunsworth, C. Gidney, I. Aleiner, F. Arute, K. Arya, J. Atalaya, R. Babbush, J. C. Bardin, R. Barends, J. Basso, A. Bengtsson, A. Bilmes, M. Broughton, B. B. Buckley, D. A. Buell, B. Burkett, N. Bushnell, B. Chiaro, R. Collins, W. Courtney, S. Demura, A. R. Derk, D. Eppens, C. Erickson, L. Faoro, E. Farhi, A. G. Fowler, B. Foxen, M. Giustina, A. Greene, J. A. Gross, M. P. Harrigan, S. D. Harrington, J. Hilton, S. Hong, T. Huang, W. J. Huggins, L. B. Ioffe, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, T. Khattar, S. Kim, P. V. Klimov, A. N. Korotkov, F. Kostritsa, D. Landhuis, P. Laptev, A. Locharla, E. Lucero, O. Martin, J. R. McClean, M. McEwen, K. C. Miao, M. Mohseni, S. Montazeri, W. Mruczkiewicz, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, T. E. O’Brien, A. Opremcak, B. Pató, A. Petukhov, N. C. Rubin, D. Sank, V. Shvarts, D. Strain, M. Szalay, B. Villalonga, T. C. White, Z. Yao, P. Yeh, J. Yoo, A. Zalcman, H. Neven, S. Boixo, A. Megrant, Y. Chen, J. Kelly, V. Smelyanskiy, A. Kitaev, M. Knap, F. Pollmann,  and P. Roushan, “Realizing topologically ordered states on a quantum processor,” Science 374, 1237–1241 (2021).
  14. Sebastian Krinner, Nathan Lacroix, Ants Remm, Agustin Di Paolo, Elie Genois, Catherine Leroux, Christoph Hellings, Stefania Lazar, Francois Swiadek, Johannes Herrmann, Graham J. Norris, Christian Kraglund Andersen, Markus Müller, Alexandre Blais, Christopher Eichler,  and Andreas Wallraff, “Realizing repeated quantum error correction in a distance-three surface code,” Nature 605, 669–674 (2022).
  15. Youwei Zhao, Yangsen Ye, He-Liang Huang, Yiming Zhang, Dachao Wu, Huijie Guan, Qingling Zhu, Zuolin Wei, Tan He, Sirui Cao, Fusheng Chen, Tung-Hsun Chung, Hui Deng, Daojin Fan, Ming Gong, Cheng Guo, Shaojun Guo, Lianchen Han, Na Li, Shaowei Li, Yuan Li, Futian Liang, Jin Lin, Haoran Qian, Hao Rong, Hong Su, Lihua Sun, Shiyu Wang, Yulin Wu, Yu Xu, Chong Ying, Jiale Yu, Chen Zha, Kaili Zhang, Yong-Heng Huo, Chao-Yang Lu, Cheng-Zhi Peng, Xiaobo Zhu,  and Jian-Wei Pan, “Realization of an error-correcting surface code with superconducting qubits,” Phys. Rev. Lett. 129, 030501 (2022).
  16. Takuya Ohno, Gaku Arakawa, Ikuo Ichinose,  and Tetsuo Matsui, “Phase structure of the random-plaquette gauge model: accuracy threshold for a toric quantum memory,” Nuclear Physics B 697, 462–480 (2004).
  17. Aleksander Kubica, Michael E. Beverland, Fernando Brandão, John Preskill,  and Krysta M. Svore, “Three-dimensional color code thresholds via statistical-mechanical mapping,” Phys. Rev. Lett. 120, 180501 (2018).
  18. Sagar Vijay, Jeongwan Haah,  and Liang Fu, “Fracton topological order, generalized lattice gauge theory, and duality,” Phys. Rev. B 94, 235157 (2016).
  19. Jeongwan Haah, “Local stabilizer codes in three dimensions without string logical operators,” Phys. Rev. A 83, 042330 (2011).
  20. Sergey Bravyi and Jeongwan Haah, “Quantum self-correction in the 3d cubic code model,” Phys. Rev. Lett. 111, 200501 (2013).
  21. Hao Song, Janik Schönmeier-Kromer, Ke Liu, Oscar Viyuela, Lode Pollet,  and M. A. Martin-Delgado, “Optimal thresholds for fracton codes and random spin models with subsystem symmetry,” Phys. Rev. Lett. 129, 230502 (2022).
  22. Claudio Chamon, “Quantum glassiness in strongly correlated clean systems: An example of topological overprotection,” Phys. Rev. Lett. 94, 040402 (2005).
  23. Beni Yoshida, “Exotic topological order in fractal spin liquids,” Phys. Rev. B 88, 125122 (2013).
  24. Han Ma, Ethan Lake, Xie Chen,  and Michael Hermele, “Fracton topological order via coupled layers,” Phys. Rev. B 95, 245126 (2017).
  25. Wilbur Shirley, Kevin Slagle, Zhenghan Wang,  and Xie Chen, “Fracton models on general three-dimensional manifolds,” Phys. Rev. X 8, 031051 (2018).
  26. Hao Song, Abhinav Prem, Sheng-Jie Huang,  and M. A. Martin-Delgado, “Twisted fracton models in three dimensions,” Phys. Rev. B 99, 155118 (2019).
  27. Abhinav Prem, Sheng-Jie Huang, Hao Song,  and Michael Hermele, “Cage-net fracton models,” Phys. Rev. X 9, 021010 (2019).
  28. Kevin Slagle, “Foliated quantum field theory of fracton order,” Phys. Rev. Lett. 126, 101603 (2021).
  29. Abhinav Prem, Jeongwan Haah,  and Rahul Nandkishore, “Glassy quantum dynamics in translation invariant fracton models,” Phys. Rev. B 95, 155133 (2017).
  30. Trithep Devakul, Yizhi You, F. J. Burnell,  and S. L. Sondhi, “Fractal Symmetric Phases of Matter,” SciPost Phys. 6, 007 (2019).
  31. Rahul M. Nandkishore and Michael Hermele, “Fractons,” Annual Review of Condensed Matter Physics 10, 295–313 (2019).
  32. David Aasen, Daniel Bulmash, Abhinav Prem, Kevin Slagle,  and Dominic J. Williamson, “Topological defect networks for fractons of all types,” Phys. Rev. Research 2, 043165 (2020).
  33. Trithep Devakul, S. A. Parameswaran,  and S. L. Sondhi, “Correlation function diagnostics for type-i fracton phases,” Phys. Rev. B 97, 041110(R) (2018).
  34. M. Mühlhauser, M. R. Walther, D. A. Reiss,  and K. P. Schmidt, “Quantum robustness of fracton phases,” Phys. Rev. B 101, 054426 (2020).
  35. Chengkang Zhou, Meng-Yuan Li, Zheng Yan, Peng Ye,  and Zi Yang Meng, “Evolution of dynamical signature in the x-cube fracton topological order,” Phys. Rev. Research 4, 033111 (2022).
  36. Guo-Yi Zhu, Ji-Yao Chen, Peng Ye,  and Simon Trebst, “Topological fracton quantum phase transitions by tuning exact tensor network states,” Phys. Rev. Lett. 130, 216704 (2023).
  37. Giovanni Canossa, Lode Pollet,  and Ke Liu, “Hybrid symmetry breaking in classical spin models with subsystem symmetries,” Phys. Rev. B 107, 054431 (2023).
  38. Brandon C. Rayhaun and Dominic J. Williamson, “Higher-form subsystem symmetry breaking: Subdimensional criticality and fracton phase transitions,” SciPost Phys. 15, 017 (2023).
  39. Mohammad Hossein Zarei and Mohammad Nobakht, “Foliated order parameter in a fracton phase transition,” Phys. Rev. B 106, 035101 (2022).
  40. Han Yan, Owen Benton, L. D. C. Jaubert,  and Nic Shannon, “Rank–2 u⁢(1)𝑢1u(1)italic_u ( 1 ) spin liquid on the breathing pyrochlore lattice,” Phys. Rev. Lett. 124, 127203 (2020).
  41. Hao Song, Nathanan Tantivasadakarn, Wilbur Shirley,  and Michael Hermele, “Fracton self-statistics,” Phys. Rev. Lett. 132, 016604 (2024).
  42. Nils Niggemann, Yasir Iqbal,  and Johannes Reuther, “Quantum effects on unconventional pinch point singularities,” Phys. Rev. Lett. 130, 196601 (2023).
  43. Nathan Seiberg and Shu-Heng Shao, “Exotic Symmetries, Duality, and Fractons in 2+1-Dimensional Quantum Field Theory,” SciPost Phys. 10, 27 (2021a).
  44. Nathan Seiberg and Shu-Heng Shao, “Exotic U⁢(1)𝑈1U(1)italic_U ( 1 ) Symmetries, Duality, and Fractons in 3+1-Dimensional Quantum Field Theory,” SciPost Phys. 9, 46 (2020).
  45. Nathan Seiberg and Shu-Heng Shao, “Exotic ℤNsubscriptℤ𝑁\mathbb{Z}_{N}blackboard_Z start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT Symmetries, Duality, and Fractons in 3+1-Dimensional Quantum Field Theory,” SciPost Phys. 10, 3 (2021b).
  46. Michael Pretko, Xie Chen,  and Yizhi You, “Fracton phases of matter,” International Journal of Modern Physics A 35, 2030003 (2020).
  47. Daniel Bulmash and Maissam Barkeshli, “Higgs mechanism in higher-rank symmetric u(1) gauge theories,” Phys. Rev. B 97, 235112 (2018).
  48. Han Ma, Michael Hermele,  and Xie Chen, “Fracton topological order from the higgs and partial-confinement mechanisms of rank-two gauge theory,” Phys. Rev. B 98, 035111 (2018).
  49. Jian-Keng Yuan, Shuai A. Chen,  and Peng Ye, “Fractonic superfluids,” Phys. Rev. Res. 2, 023267 (2020).
  50. Shuai A. Chen, Jian-Keng Yuan,  and Peng Ye, “Fractonic superfluids. ii. condensing subdimensional particles,” Phys. Rev. Research 3, 013226 (2021).
  51. Aron J. Beekman, Jaakko Nissinen, Kai Wu, Ke Liu, Robert-Jan Slager, Zohar Nussinov, Vladimir Cvetkovic,  and Jan Zaanen, “Dual gauge field theory of quantum liquid crystals in two dimensions,” Physics Reports 683, 1–110 (2017).
  52. Michael Pretko and Leo Radzihovsky, “Fracton-elasticity duality,” Phys. Rev. Lett. 120, 195301 (2018).
  53. Han Yan, “Hyperbolic fracton model, subsystem symmetry, and holography,” Phys. Rev. B 99, 155126 (2019).
  54. Andrey Gromov and Leo Radzihovsky, “Colloquium: Fracton matter,” Rev. Mod. Phys. 96, 011001 (2024).
  55. Konstantinos Sfairopoulos, Luke Causer, Jamie F Mair,  and Juan P Garrahan, “Boundary conditions dependence of the phase transition in the quantum newman-moore model,” arXiv preprint arXiv:2301.02826  (2023).
  56. Such symmetries are also dubbed subsystem symmetry in the literature. As the term “subsystem” has different meanings in different contexts, for clarity, we instead use “sub-dimensional” to refer to entire sub-manifolds or fractals of a system.
  57. Franz J. Wegner, “Duality in Generalized Ising Models and Phase Transitions without Local Order Parameters,” Journal of Mathematical Physics 12, 2259–2272 (2003).
  58. F.J. Wegner, “A transformation including the weak-graph theorem and the duality transformation,” Physica 68, 570–578 (1973).
  59. The symmetry generator for the fractal Ising model given in the appendix of Ref. Vijay et al. (2016) is a global symmetry.
  60. Sergey Bravyi and Jeongwan Haah, ‘‘Energy landscape of 3d spin hamiltonians with topological order,” Phys. Rev. Lett. 107, 150504 (2011).
  61. Jeongwan Haah, “Commuting pauli hamiltonians as maps between free modules,” Communications in Mathematical Physics 324, 351–399 (2013).
  62. John B. Kogut, “An introduction to lattice gauge theory and spin systems,” Rev. Mod. Phys. 51, 659–713 (1979).
  63. H. A. Kramers and G. H. Wannier, “Statistics of the two-dimensional ferromagnet. part i,” Phys. Rev. 60, 252–262 (1941a).
  64. H. A. Kramers and G. H. Wannier, “Statistics of the two-dimensional ferromagnet. part ii,” Phys. Rev. 60, 263–276 (1941b).
  65. Wolfhard Janke, “Monte carlo methods in classical statistical physics,” in Computational Many-Particle Physics, edited by H. Fehske, R. Schneider,  and A. Weiße (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008) pp. 79–140.
  66. David P. Landau and Kurt Binder, A Guide to Monte Carlo Simulations in Statistical Physics, 4th ed. (Cambridge University Press, 2014).
  67. Jooyoung Lee and J. M. Kosterlitz, “Finite-size scaling and monte carlo simulations of first-order phase transitions,” Phys. Rev. B 43, 3265–3277 (1991).
  68. W. Janke, “First-order phase transitions,” in Computer Simulations of Surfaces and Interfaces, edited by Burkhard Dünweg, David P. Landau,  and Andrey I. Milchev (Springer Netherlands, Dordrecht, 2003) pp. 111–135.
  69. Marco Mueller, Wolfhard Janke,  and Desmond A. Johnston, “Nonstandard finite-size scaling at first-order phase transitions,” Phys. Rev. Lett. 112, 200601 (2014).
  70. Desmond A. Johnston, Marco Mueller,  and Wolfhard Janke, “Plaquette ising models, degeneracy and scaling,” The European Physical Journal Special Topics 226, 749–764 (2017).
  71. Masaki Oshikawa, “Ordered phase and scaling in Znsubscript𝑍𝑛{Z}_{n}italic_Z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT models and the three-state antiferromagnetic potts model in three dimensions,” Phys. Rev. B 61, 3430–3434 (2000).
  72. J. Hove and A. Sudbø, “Criticality versus q in the (2+1)21(2+1)( 2 + 1 )-dimensional Zqsubscript𝑍𝑞{Z}_{q}italic_Z start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT clock model,” Phys. Rev. E 68, 046107 (2003).
  73. Gyan Bhanot and Michael Creutz, “Phase diagram of z⁢(n)𝑧𝑛z(n)italic_z ( italic_n ) and u(1) gauge theories in three dimensions,” Phys. Rev. D 21, 2892–2902 (1980).
  74. Ke Liu, Jaakko Nissinen, Zohar Nussinov, Robert-Jan Slager, Kai Wu,  and Jan Zaanen, “Classification of nematic order in 2 + 1 dimensions: Dislocation melting and o𝑜oitalic_o(2)/ZNsubscript𝑍𝑁{Z}_{N}italic_Z start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT lattice gauge theory,” Phys. Rev. B 91, 075103 (2015).
  75. Robert Savit, “Duality in field theory and statistical systems,” Rev. Mod. Phys. 52, 453–487 (1980).
  76. Jürg Fröhlich and Thomas Spencer, “The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the Coulomb gas,” Communications in Mathematical Physics 81, 527 – 602 (1981).
  77. G. Ortiz, E. Cobanera,  and Z. Nussinov, “Dualities and the phase diagram of the p-clock model,” Nuclear Physics B 854, 780–814 (2012).
  78. Zi-Qian Li, Li-Ping Yang, Z. Y. Xie, Hong-Hao Tu, Hai-Jun Liao,  and T. Xiang, “Critical properties of the two-dimensional q𝑞qitalic_q-state clock model,” Phys. Rev. E 101, 060105 (2020).
  79. D. Horn, M. Weinstein,  and S. Yankielowicz, “Hamiltonian approach to z⁢(n)𝑧𝑛z(n)italic_z ( italic_n ) lattice gauge theories,” Phys. Rev. D 19, 3715–3731 (1979).
  80. Jean-Michel Drouffe and Jean-Bernard Zuber, ‘‘Strong coupling and mean field methods in lattice gauge theories,” Physics Reports 102, 1–119 (1983).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com