Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Max-Rank: Efficient Multiple Testing for Conformal Prediction (2311.10900v4)

Published 17 Nov 2023 in stat.ME, math.ST, stat.ML, and stat.TH

Abstract: Multiple hypothesis testing (MHT) frequently arises in scientific inquiries, and concurrent testing of multiple hypotheses inflates the risk of Type-I errors or false positives, rendering MHT corrections essential. This paper addresses MHT in the context of conformal prediction, a flexible framework for predictive uncertainty quantification. Some conformal applications give rise to simultaneous testing, and positive dependencies among tests typically exist. We introduce $\texttt{max-rank}$, a novel correction that exploits these dependencies whilst efficiently controlling the family-wise error rate. Inspired by existing permutation-based corrections, $\texttt{max-rank}$ leverages rank order information to improve performance and integrates readily with any conformal procedure. We establish its theoretical and empirical advantages over the common Bonferroni correction and its compatibility with conformal prediction, highlighting the potential to strengthen predictive uncertainty estimates.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com