Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SDDPM: Speckle Denoising Diffusion Probabilistic Models (2311.10868v1)

Published 17 Nov 2023 in eess.IV

Abstract: Coherent imaging systems, such as medical ultrasound and synthetic aperture radar (SAR), are subject to corruption from speckle due to sub-resolution scatterers. Since speckle is multiplicative in nature, the constituent image regions become corrupted to different extents. The task of denoising such images requires algorithms specifically designed for removing signal-dependent noise. This paper proposes a novel image denoising algorithm for removing signal-dependent multiplicative noise with diffusion models, called Speckle Denoising Diffusion Probabilistic Models (SDDPM). We derive the mathematical formulations for the forward process, the reverse process, and the training objective. In the forward process, we apply multiplicative noise to a given image and prove that the forward process is Gaussian. We show that the reverse process is also Gaussian and the final training objective can be expressed as the Kullback Leibler (KL) divergence between the forward and reverse processes. As derived in the paper, the final denoising task is a single step process, thereby reducing the denoising time significantly. We have trained our model with natural land-use images and ultrasound images for different noise levels. Extensive experiments centered around two different applications show that SDDPM is robust and performs significantly better than the comparative models even when the images are severely corrupted.

Citations (2)

Summary

We haven't generated a summary for this paper yet.