Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$P_c\varepsilonκ_{max}$-Means++: Adapt-$P$ Driven by Energy and Distance Quality Probabilities Based on $κ$-Means++ for the Stable Election Protocol (SEP) (2311.10595v1)

Published 17 Nov 2023 in cs.NI and cs.DC

Abstract: The adaptive probability $P_{\text{\tiny{adp}}}$ formalized in Adapt-$P$ is developed based on the remaining number of SNs $\zeta$ and optimal clustering $\kappa_{\text{\tiny{max}}}$, yet $P_{\text{\tiny{adp}}}$ does not implement the probabilistic ratios of energy and distance factors in the network. Furthermore, Adapt-$P$ does not localize cluster-heads in the first round properly because of its reliance on distance computations defined in LEACH, that might result in uneven distribution of cluster-heads in the WSN area and hence might at some rounds yield inefficient consumption of energy. This paper utilizes \nolinebreak{$k$\small{-}means\small{++}} and Adapt-$P$ to propose \nolinebreak{$P_{\text{c}} \kappa_{\text{\tiny{max}}}$\small{-}means\small{++}} clustering algorithm that better manages the distribution of cluster-heads and produces an enhanced performance. The algorithm employs an optimized cluster-head election probability $P_\text{c}$ developed based on energy-based $P_{\eta(j,i)}$ and distance-based $P!!!{\psi(j,i)}$ quality probabilities along with the adaptive probability $P{\text{\tiny{adp}}}$, utilizing the energy $\varepsilon$ and distance optimality $d!{\text{\tiny{opt}}}$ factors. Furthermore, the algorithm utilizes the optimal clustering $\kappa{\text{\tiny{max}}}$ derived in Adapt-$P$ to perform adaptive clustering through \nolinebreak{$\kappa_{\text{\tiny{max}}}$\small{-}means\small{++}}. The proposed \nolinebreak{$P_{\text{c}} \kappa_{\text{\tiny{max}}}${\small{-}}means{\small{++}}} is compared with the energy-based algorithm \nolinebreak{$P_\eta \varepsilon \kappa_{\text{\tiny{max}}}${\small{-}}means{\small{++}}} and distance-based \nolinebreak{$P_\psi d_{\text{\tiny{opt}}} \kappa_{\text{\tiny{max}}}${\small{-}}means{\small{++}}} algorithm, and has shown an optimized performance in term of residual energy and stability period of the network.

Summary

We haven't generated a summary for this paper yet.