Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A resolution theorem for extriangulated categories with applications to the index (2311.10576v5)

Published 17 Nov 2023 in math.KT, math.CT, and math.RT

Abstract: Quillen's Resolution Theorem in algebraic $K$-theory provides a powerful computational tool for calculating $K$-groups of exact categories. At the level of $K_0$, this result goes back to Grothendieck. In this article, we first establish an extriangulated version of Grothendieck's Resolution Theorem. Second, we use this Extriangulated Resolution Theorem to gain new insight into the index theory of triangulated categories. Indeed, we propose an index with respect to an extension-closed subcategory $\mathscr{N}$ of a triangulated category $\mathscr{C}$ and we prove an additivity formula with error term. Our index recovers the index with respect to a contravariantly finite, rigid subcategory $\mathscr{X}$ defined by J{\o}rgensen and the second author, as well as an isomorphism between $K_0{\mathsf{sp}}(\mathscr{X})$ and the Grothendieck group of a relative extriangulated structure $\mathscr{C}_{R}{\mathscr{X}}$ on $\mathscr{C}$ when $\mathscr{X}$ is $n$-cluster tilting. In addition, we generalize and enhance some results of Fedele. Our perspective allows us to remove certain restrictions and simplify some arguments. Third, as another application of our Extriangulated Resolution Theorem, we show that if $\mathscr{X}$ is $n$-cluster tilting in an abelian category, then the index introduced by Reid gives an isomorphism $K_0(\mathscr{C}_R{\mathscr{X}}) \cong K_0{\mathsf{sp}}(\mathscr{X})$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. T. Aihara and O. Iyama. Silting mutation in triangulated categories. J. Lond. Math. Soc. (2), 85(3):633–668, 2012.
  2. N. Abe and H. Nakaoka. General heart construction on a triangulated category (II): Associated homological functor. Appl. Categ. Structures, 20(2):161–174, 2012.
  3. M. Auslander and Ø. Solberg. Relative homology and representation theory. I. Relative homology and homologically finite subcategories. Comm. Algebra, 21(9):2995–3031, 1993.
  4. H. Bass. Algebraic K𝐾Kitalic_K-theory. W. A. Benjamin, Inc., New York-Amsterdam, 1968.
  5. Faisceaux pervers. In Analysis and topology on singular spaces, I (Luminy, 1981), volume 100 of Astérisque, pages 5–171. Soc. Math. France, Paris, 1982.
  6. A. Beligiannis. Relative homological algebra and purity in triangulated categories. J. Algebra, 227(1):268–361, 2000.
  7. A. Beligiannis. Rigid objects, triangulated subfactors and abelian localizations. Math. Z., 274(3-4):841–883, 2013.
  8. A. Beligiannis. Relative homology, higher cluster-tilting theory and categorified Auslander-Iyama correspondence. J. Algebra, 444:367–503, 2015.
  9. From triangulated categories to module categories via localization II: calculus of fractions. J. Lond. Math. Soc. (2), 86(1):152–170, 2012.
  10. From triangulated categories to module categories via localisation. Trans. Amer. Math. Soc., 365(6):2845–2861, 2013.
  11. Cluster-tilted algebras. Trans. Amer. Math. Soc., 359(1):323–332, 2007.
  12. Tilting theory and cluster combinatorics. Adv. Math., 204(2):572–618, 2006.
  13. A. Borel and J.-P. Serre. Le théorème de Riemann-Roch. Bull. Soc. Math. France, 86:97–136, 1958.
  14. P. A. Bergh and M. Thaule. The Grothendieck group of an n𝑛nitalic_n-angulated category. J. Pure Appl. Algebra, 218(2):354–366, 2014.
  15. The category of extensions and a characterisation of n𝑛nitalic_n-exangulated functors. Math. Z., 305(3):44, 2023.
  16. R. Bennett-Tennenhaus and A. Shah. Transport of structure in higher homological algebra. J. Algebra, 574:514–549, 2021.
  17. M. E. Cardenas-Escudero. Localization for exact categories. ProQuest LLC, Ann Arbor, MI, 1998. Thesis (Ph.D.)–State University of New York at Binghamton.
  18. X. Chen. On exact dg categories. PhD thesis, Université Paris Cité, 2023. https://arxiv.org/abs/2306.08231.
  19. H. Chen and C. Xi. Recollements of derived categories II: Algebraic K-theory. Preprint, 2012. https://arxiv.org/abs/1212.1879.
  20. Exact categories and vector space categories. Trans. Amer. Math. Soc., 351(2):647–682, 1999. With an appendix by B. Keller.
  21. H. Enomoto and S. Saito. Grothendieck monoids of extriangulated categories. Preprint, 2022. https://arxiv.org/abs/2208.02928.
  22. F. Fedele. Grothendieck groups of triangulated categories via cluster tilting subcategories. Nagoya Math. J., 244:204–231, 2021.
  23. P. Gabriel. Des catégories abéliennes. Bull. Soc. Math. France, 90:323–448, 1962.
  24. n𝑛nitalic_n-angulated categories. J. Reine Angew. Math., 675:101–120, 2013.
  25. Hereditary extriangulated categories: Silting objects, mutation, negative extensions. Preprint, 2023. https://arxiv.org/abs/2303.07134v2.
  26. P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35. Springer-Verlag New York, Inc., New York, 1967.
  27. J. Haugland. The Grothendieck group of an n𝑛nitalic_n-exangulated category. Appl. Categ. Structures, 29(3):431–446, 2021.
  28. n-exangulated categories (I): Definitions and fundamental properties. J. Algebra, 570:531–586, 2021.
  29. On the Grothendieck group of a quotient singularity defined by a finite abelian group. J. Algebra, 149(1):122–138, 1992.
  30. H. Holm. K-groups for rings of finite Cohen-Macaulay type. Forum Math., 27(4):2413–2452, 2015.
  31. A. Heller and I. Reiner. Grothendieck groups of integral group rings. Illinois J. Math., 9:349–360, 1965.
  32. S. Hassoun and A. Shah. Integral and quasi-abelian hearts of twin cotorsion pairs on extriangulated categories. Comm. Algebra, 48(12):5142–5162, 2020.
  33. Auslander–Reiten theory in extriangulated categories. Trans. Amer. Math. Soc., 2023. To appear. https://arxiv.org/abs/1805.03776.
  34. O. Iyama and Y. Yoshino. Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent. Math., 172(1):117–168, 2008.
  35. P. Jørgensen. Tropical friezes and the index in higher homological algebra. Math. Proc. Cambridge Philos. Soc., 171(1):23–49, 2021.
  36. P. Jørgensen and A. Shah. Grothendieck groups of d𝑑ditalic_d-exangulated categories and a modified Caldero-Chapoton map. J. Pure Appl. Algebra, 2023. To appear. https://arxiv.org/abs/2106.02142.
  37. P. Jørgensen and A. Shah. The index with respect to a rigid subcategory of a triangulated category. Int. Math. Res. Not. IMRN, 2023. In press. https://doi.org/10.1093/imrn/rnad130.
  38. Y. Kimura. Tilting and Silting Theory of Noetherian Algebras. Int. Math. Res. Not. IMRN, 2023.
  39. B. Keller and I. Reiten. Cluster-tilted algebras are Gorenstein and stably Calabi-Yau. Adv. Math., 211(1):123–151, 2007.
  40. H. Krause. Smashing subcategories and the telescope conjecture—an algebraic approach. Invent. Math., 139(1):99–133, 2000.
  41. S. Koenig and B. Zhu. From triangulated categories to abelian categories: cluster tilting in a general framework. Math. Z., 258(1):143–160, 2008.
  42. Y. Liu and H. Nakaoka. Hearts of twin cotorsion pairs on extriangulated categories. J. Algebra, 528:96–149, 2019.
  43. H. Nakaoka. General heart construction on a triangulated category (I): Unifying t𝑡titalic_t-structures and cluster tilting subcategories. Appl. Categ. Structures, 19(6):879–899, 2011.
  44. H. Nakaoka. General heart construction for twin torsion pairs on triangulated categories. J. Algebra, 374:195–215, 2013.
  45. A. Neeman. The K𝐾Kitalic_K-theory of triangulated categories. In Handbook of K𝐾Kitalic_K-theory. Vol. 1, 2, pages 1011–1078. Springer, Berlin, 2005.
  46. Localization of extriangulated categories. J. Algebra, 611:341–398, 2022.
  47. H. Nakaoka and Y. Palu. Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. Géom. Différ. Catég., 60(2):117–193, 2019.
  48. Y. Ogawa. Auslander’s defects over extriangulated categories: an application for the general heart construction. J. Math. Soc. Japan, 73(4):1063–1089, 2021.
  49. Y. Ogawa. Localization of triangulated categories with respect to extension-closed subcategories. Preprint, 2022. https://arxiv.org/abs/2205.12116.
  50. Y. Palu. Cluster characters for 2-Calabi-Yau triangulated categories. Ann. Inst. Fourier (Grenoble), 58(6):2221–2248, 2008.
  51. Y. Palu. Grothendieck group and generalized mutation rule for 2-Calabi-Yau triangulated categories. J. Pure Appl. Algebra, 213(7):1438–1449, 2009.
  52. Associahedra for finite type cluster algebras and minimal relations between 𝐠𝐠\mathbf{g}bold_g-vectors. Preprint, 2019. https://arxiv.org/abs/1906.06861.
  53. D. Quillen. Higher algebraic K𝐾Kitalic_K-theory. I. In Algebraic K𝐾Kitalic_K-theory, I: Higher K𝐾Kitalic_K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math., Vol. 341, pages 85–147. Springer, Berlin, 1973.
  54. J. Reid. Indecomposable objects determined by their index in higher homological algebra. Proc. Amer. Math. Soc., 148(6):2331–2343, 2020.
  55. J. Reid. Modules determined by their composition factors in higher homological algebra. Preprint, 2020. https://arxiv.org/abs/2007.06350.
  56. M. Schlichting. Negative K𝐾Kitalic_K-theory of derived categories. Math. Z., 253(1):97–134, 2006.
  57. Théorie des intersections et théorème de Riemann-Roch. Lecture Notes in Mathematics, Vol. 225. Springer-Verlag, Berlin-New York, 1971. Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6), Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J.-P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J.-P. Serre.
  58. R. W. Thomason and T. Trobaugh. Higher algebraic K𝐾Kitalic_K-theory of schemes and of derived categories. In The Grothendieck Festschrift, Vol. III, volume 88 of Progr. Math., pages 247–435. Birkhäuser Boston, Boston, MA, 1990.
  59. J.-L. Verdier. Des catégories dérivées des catégories abéliennes. Astérisque, 239:xii+253 (1997), 1996. With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis.
  60. C. A. Weibel. The K𝐾Kitalic_K-book, volume 145 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2013. An introduction to algebraic K𝐾Kitalic_K-theory.
  61. B. Zhu and X. Zhuang. Grothendieck groups in extriangulated categories. J. Algebra, 574:206–232, 2021.
Citations (4)

Summary

We haven't generated a summary for this paper yet.