Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Fast Estimations of Hitting Time of Elitist Evolutionary Algorithms from Fitness Levels (2311.10502v2)

Published 17 Nov 2023 in cs.NE

Abstract: The fitness level method is an easy-to-use tool for estimating the hitting time of elitist evolutionary algorithms. Recently, linear lower and upper bounds by fitness levels have been constructed. But these bounds require recursive computation, which makes them difficult to use in practice. We address this shortcoming with a new directed graph (digraph) method that does not require recursive computation and significantly simplifies the calculation of coefficients in the lower bound. In the method, we select a sub-digraph and divide it into fitness levels, then construct an explicit formula for computing the linear lower bound coefficients using transition probabilities restricted to the subdigraph. A major advantage of the new method is the derivation of tight lower bounds on fitness functions with shortcuts, which are difficult to achieve using previous fitness methods. We use three examples (FullyDeceptive, TwoMax1 and Deceptive) to demonstrate that each new lower bound is tight, but previous lower bounds are not. Our work significantly extends the fitness level method from addressing simple fitness functions without shortcuts to more complex functions with shortcuts.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets