Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Invariant subspaces and PCA in nearly matrix multiplication time (2311.10459v4)

Published 17 Nov 2023 in cs.DS, cs.NA, and math.NA

Abstract: Approximating invariant subspaces of generalized eigenvalue problems (GEPs) is a fundamental computational problem at the core of machine learning and scientific computing. It is, for example, the root of Principal Component Analysis (PCA) for dimensionality reduction, data visualization, and noise filtering, and of Density Functional Theory (DFT), arguably the most popular method to calculate the electronic structure of materials. Given Hermitian $H,S\in\mathbb{C}{n\times n}$, where $S$ is positive-definite, let $\Pi_k$ be the true spectral projector on the invariant subspace that is associated with the $k$ smallest (or largest) eigenvalues of the GEP $HC=SC\Lambda$, for some $k\in[n]$. We show that we can compute a matrix $\widetilde\Pi_k$ such that $\lVert\Pi_k-\widetilde\Pi_k\rVert_2\leq \epsilon$, in $O\left( n{\omega+\eta}\mathrm{polylog}(n,\epsilon{-1},\kappa(S),\mathrm{gap}_k{-1}) \right)$ bit operations in the floating point model, for some $\epsilon\in(0,1)$, with probability $1-1/n$. Here, $\eta>0$ is arbitrarily small, $\omega\lesssim 2.372$ is the matrix multiplication exponent, $\kappa(S)=\lVert S\rVert_2\lVert S{-1}\rVert_2$, and $\mathrm{gap}_k$ is the gap between eigenvalues $k$ and $k+1$. To achieve such provable "forward-error" guarantees, our methods rely on a new $O(n{\omega+\eta})$ stability analysis for the Cholesky factorization, and a smoothed analysis for computing spectral gaps, which can be of independent interest. Ultimately, we obtain new matrix multiplication-type bit complexity upper bounds for PCA problems, including classical PCA and (randomized) low-rank approximation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com