Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local asymptotics and optimal control for a viscous Cahn-Hilliard-Reaction-Diffusion model for tumor growth (2311.10457v1)

Published 17 Nov 2023 in math.AP

Abstract: In this paper we study nonlocal-to-local asymptotics for a tumor-growth model coupling a viscous Cahn-Hilliard equation describing the tumor proportion with a reaction-diffusion equation for the nutrient phase parameter. First, we prove that solutions to the nonlocal Cahn-Hilliard system converge, as the nonlocality parameter tends to zero, to solutions to its local counterpart. Second, we provide first-order optimality conditions for an optimal control problem on the local model, accounting also for chemotaxis, and both for regular or singular potentials, without any additional regularity assumptions on the solution operator. The proof is based on an approximation of the local control problem by means of suitable nonlocal ones, and on proving nonlocal-to-local convergence both for the corresponding dual systems and for the associated first-order optimality conditions.

Summary

We haven't generated a summary for this paper yet.